Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Am Chem Soc ; 146(31): 21729-21741, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39078020

RESUMEN

Molecular cavities that mimic natural metalloenzymes have shown the potential to trap elusive reaction intermediates. Here, we demonstrate the formation of a rare yet stable Fe(IV)-superoxo intermediate at room temperature subsequent to dioxygen binding at the Fe(III) site of a (Et4N)2[FeIII(Cl)(bTAML)] complex confined inside the hydrophobic interior of a water-soluble Pd6L412+ nanocage. Using a combination of electron paramagnetic resonance, Mössbauer, Raman/IR vibrational, X-ray absorption, and emission spectroscopies, we demonstrate that the cage-encapsulated complex has a Fe(IV) oxidation state characterized by a stable S = 1/2 spin state and a short Fe-O bond distance of ∼1.70 Å. We find that the O2 reaction in confinement is reversible, while the formed Fe(IV)-superoxo complex readily reacts when presented with substrates having weak C-H bonds, highlighting the lability of the O-O bond. We envision that such optimally trapped high-valent superoxos can show new classes of reactivities catalyzing both oxygen atom transfer and C-H bond activation reactions.

2.
Faraday Discuss ; 234(0): 42-57, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35174376

RESUMEN

An efficient electrochemical method for the selective oxidation of alcohols to their corresponding aldehydes/ketones using a biomimetic iron complex, [(bTAML)FeIII-OH2]-, as the redox mediator in an undivided electrochemical cell with inexpensive carbon and nickel electrodes using water as an oxygen source is reported. The substrate scope also includes alcohols that contain O and N heteroatoms in the scaffold, which are well tolerated under these reaction conditions. Mechanistic studies show the involvement of a high-valent FeV(O) species, [(bTAML)FeV(O)]-, formed via PCET (overall 2H+/2e-) from [(bTAML)FeIII-OH2]- at 0.77 V (vs. Fc+/Fc). Moreover, electrokinetic studies of the oxidation of C-H bonds indicate a second-order reaction, with the C-H abstraction by FeV(O) being the rate-determining step. The overall mechanism, studied using linear free energy relationships and radical clocks, indicates a "net hydride" transfer, leading to the oxidation of the alcohol to the corresponding aldehyde or ketone. When the reaction was carried out at pH > 11, the reaction could be carried out at a ∼500 mV lower potential than that at pH 8, albeit with reduced reaction rates. The reactive intermediate involved at pH > 11 is the corresponding one-electron oxidized [(bTAML)FeIV(O)]2- species.


Asunto(s)
Hierro , Oxígeno , Alcoholes , Electrones , Hierro/química , Oxidación-Reducción , Oxígeno/química
3.
Bioconjug Chem ; 30(3): 633-646, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30592602

RESUMEN

Glycopolypeptide-based nanocarriers are an attractive class of drug delivery vehicles because of the involvement of carbohydrates in the receptor-mediated endocytosis process. To enhance their efficacy toward controlled and programmable drug delivery, we have prepared stable glycopolypeptide-based bioactive dual-stimuli-responsive (redox and enzyme) micelles for delivery of anticancer drugs specifically to the cancer cells. The amphiphilic biocompatible miktoarm star copolymer, which comprises two hydrophobic poly(ε-caprolactone) blocks, a short poly(propargyl glycine) middle block, and a hydrophilic galactose glycopolypeptide block, was designed and synthesized. The star copolymer is initially self-assembled into un-cross-linked (UCL) micelles, and free alkyne groups at the core-shell interface of the UCL micelles, which were cross-linked by bis(azidoethyl) disulfide (BADS) via click chemistry to form interface cross-linked (ICL) micelles. ICL micelles were found to be stable against dilution. BADS imparted redox-responsive properties to the micelles, while PCL rendered them enzyme-degradable. Dual-stimuli-responsive release behavior with Dox as model drug was studied individually as well as synergistically by applying two stimuli in different sequences. The galactose-containing UCL and ICL micelles were shown to be nontoxic. Intracellular Dox release from UCL and ICL micelles was demonstrated in liver cancer cells (HepG2) by time-dependent cellular uptake studies, and controlled release from ICL micelles compared to UCL micelles was observed. The present report opens a new approach toward targeted and programmable drug delivery in tumor tissues via a specifically targeted (receptor-mediated), dual-responsive, and stable cross-linked nanocarrier system.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Preparaciones de Acción Retardada/química , Doxorrubicina/administración & dosificación , Glicopéptidos/química , Poliésteres/química , Alquinos/química , Antibióticos Antineoplásicos/farmacología , Reactivos de Enlaces Cruzados/química , Doxorrubicina/farmacología , Glicina/análogos & derivados , Glicina/química , Células Hep G2 , Humanos , Micelas , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Oxidación-Reducción
4.
Chemistry ; 25(34): 8092-8104, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-30912866

RESUMEN

High-valent metal oxo oxidants are common catalytic-cycle intermediates in enzymes and known to be highly reactive. To understand which features of these oxidants affect their reactivity, a series of biomimetic iron(V) oxo oxidants with peripherally substituted biuret-modified tetraamido macrocyclic ligands were synthesized and characterized. Major shifts in the UV/Vis absorption as a result of replacing a group in the equatorial plane of the iron(V) oxo species were found. Further characterization by EPR spectroscopy, ESI-MS, and resonance Raman spectroscopy revealed differences in structure and the electronic configuration of these complexes. A systematic reactivity study with a range of substrates was performed and showed that the reactions are affected by electron-withdrawing substituents in the equatorial ligand, which enhance the reaction rate by almost 1016 orders of magnitude. Thus, the long-range electrostatic perturbations have a major influence on the rate constant. Finally, computational studies identified the various electronic contributions to the rate-determining reaction step and explained how the equatorial ligand periphery affects the properties of the oxidant.

5.
Chemistry ; 23(14): 3414-3424, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28012231

RESUMEN

A detailed electrochemical investigation of a series of iron complexes (biuret-modified tetraamido iron macrocycles FeIII -bTAML), including the first electrochemical generation of FeV (O), and demonstration of their efficacy as homogeneous catalysts for electrochemical water oxidation (WO) in aqueous medium are reported. Spectroelectrochemical and mass spectral studies indicated FeV (O) as the active oxidant, formed due to two redox transitions, which were assigned as FeIV (O)/FeIII (OH2 ) and FeV (O)/FeIV (O). The spectral properties of both of these high-valent iron oxo species perfectly match those of their chemically synthesised versions, which were thoroughly characterised by several spectroscopic techniques. The O-O bond-formation step occurs by nucleophilic attack of H2 O on FeV (O). A kinetic isotope effect of 3.2 indicates an atom-proton transfer (APT) mechanism. The reaction of chemically synthesised FeV (O) in CH3 CN and water was directly probed by electrochemistry and was found to be first-order in water. The pKa value of the buffer base plays a critical role in the rate-determining step by increasing the reaction rate several-fold. The electronic effect on redox potential, WO rates, and onset overpotential was studied by employing a series of iron complexes. The catalytic activity was enhanced by the presence of electron-withdrawing groups on the bTAML framework. Changing the substituents from OMe to NO2 resulted in an eightfold increase in reaction rate, while the overpotential increased threefold.

6.
Chemistry ; 22(10): 3387-3396, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26833880

RESUMEN

A linear tetracarboxylic acid ligand, H4 L, with a pendent amine moiety solvothermally forms two isostructural metal-organic frameworks (MOFs) LM (M=ZnII , CuII ). Framework LCu can also be obtained from LZn by post- synthetic metathesis without losing crystallinity. Compared with LZn , the LCu framework exhibits high thermal stability and allows removal of guest solvent and metal-bound water molecules to afford the highly porous, LCu '. At 77 K, LCu ' absorbs 2.57 wt % of H2 at 1 bar, which increases significantly to 4.67 wt % at 36 bar. The framework absorbs substantially high amounts of methane (238.38 cm3 g-1 , 17.03 wt %) at 303 K and 60 bar. The CH4 absorption at 303 K gives a total volumetric capacity of 166 cm3 (STP) cm-3 at 35 bar (223.25 cm3 g-1 , 15.95 wt %). Interestingly, the NH2 groups in the linker, which decorate the channel surface, allow a remarkable 39.0 wt % of CO2 to be absorbed at 1 bar and 273 K, which comes within the dominion of the most famous MOFs for CO2 absorption. Also, LCu ' shows pronounced selectivity for CO2 absorption over CH4 , N2 , and H2 at 273 K. The absorbed CO2 can be converted to value-added cyclic carbonates under relatively mild reaction conditions (20 bar, 120 °C). Finally, LCu ' is found to be an excellent heterogeneous catalyst in regioselective 1,3-dipolar cycloaddition reactions ("click" reactions) and provides an efficient, economic route for the one-pot synthesis of structurally divergent propargylamines through three-component coupling of alkynes, amines, and aldehydes.

7.
Chemistry ; 21(16): 5993, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25740016

RESUMEN

Invited for the cover of this issue are Terrence J. Collins and co-workers at Carnegie Mellon University (USA) and the National Chemical Laboratory (India). The image depicts five generations of tetraamido macrocyclic ligand (TAML) activators, which are small molecule, full-functional mimics of oxidizing enzymes that arguably outperform the peroxidase enzymes they mimic. Read the full text of the article at 10.1002/chem.201406061.

8.
Chemistry ; 21(16): 6226-33, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25684430

RESUMEN

The catalytic activity of the N-tailed ("biuret") TAML (tetraamido macrocyclic ligand) activators [Fe{4-XC6 H3 -1,2-(NCOCMe2 NCO)2 NR}Cl](2-) (3; N atoms in boldface are coordinated to the central iron atom; the same nomenclature is used in for compounds 1 and 2 below), [X, R=H, Me (a); NO2 , Me (b); H, Ph (c)] in the oxidative bleaching of Orange II dye by H2 O2 in aqueous solution is mechanistically compared with the previously investigated activator [Fe{4-XC6 H3 -1,2-(NCOCMe2 NCO)2 CMe2 }OH2 ](-) (1) and the more aggressive analogue [Fe(Me2 C{CON(1,2-C6 H3 -4-X)NCO}2 )OH2 ](-) (2). Catalysis by 3 of the reaction between H2 O2 and Orange II (S) occurs according to the rate law found generally for TAML activators (v=kI kII [Fe(III) ][S][H2 O2 ]/(kI [H2 O2 ]+kII [S]) and the rate constants kI and kII at pH 7 both decrease within the series 3 b>3 a>3 c. The pH dependency of kI and kII was investigated for 3 a. As with all TAML activators studied to-date, bell-shaped profiles were found for both rate constants. For kI , the maximal activity was found at pH 10.7 marking it as having similar reactivity to 1 a. For kII , the broad bell pH profile exhibits a maximum at pH about 10.5. The condition kI ≪kII holds across the entire pH range studied. Activator 3 b exhibits pronounced activity in neutral to slightly basic aqueous solutions making it worthy of consideration on a technical performance basis for water treatment. The rate constants ki for suicidal inactivation of the active forms of complexes 3 a-c were calculated using the general formula ln([S0 ]/[S∞ ])=(kII /ki )[Fe(III) ]; here [Fe(III) ], [S0 ], and [S∞ ] are the total catalyst concentration and substrate concentration at time zero and infinity, respectively. The synthesis and X-ray characterization of 3 c are also described.


Asunto(s)
Amidas/química , Compuestos Azo/química , Bencenosulfonatos/química , Peróxido de Hidrógeno/química , Compuestos Macrocíclicos/química , Catálisis , Cristalografía por Rayos X , Cinética , Ligandos , Modelos Moleculares , Oxidación-Reducción
9.
Chem Sci ; 14(38): 10515-10523, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37799989

RESUMEN

Cytochrome P450, one of nature's oxidative workhorses, catalyzes the oxidation of C-H bonds in complex biological settings. Extensive research has been conducted over the past five decades to develop a fully functional mimic that activates O2 or H2O2 in water to oxidize strong C-H bonds. We report the first example of a synthetic iron complex that functionally mimics cytochrome P450 in 100% water using H2O2 as the oxidant. This iron complex, in which one methyl group is replaced with a phenyl group in either wing of the macrocycle, oxidized unactivated C-H bonds in small organic molecules with very high selectivity in water (pH 8.5). Several substrates (34 examples) that contained arenes, heteroaromatics, and polar functional groups were oxidized with predictable selectivity and stereoretention with moderate to high yields (50-90%), low catalyst loadings (1-4 mol%) and a small excess of H2O2 (2-3 equiv.) in water. Mechanistic studies indicated the oxoiron(v) to be the active intermediate in water and displayed unprecedented selectivity towards 3° C-H bonds. Under single-turnover conditions, the reactivity of this oxoiron(v) intermediate in water was found to be around 300 fold higher than that in CH3CN, thus implying the role water plays in enzymatic systems.

10.
Biomacromolecules ; 13(5): 1287-95, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22497456

RESUMEN

The facile synthesis of high molecular weight water-soluble O-glycopolypeptide polymers by the ring-opening polymerization of their corresponding N-carboxyanhydride (NCA) in very high yield (overall yield > 70%) is reported. The per-acetylated-O-glycosylated lysine-NCA monomers, synthesized using stable glycosyl donors and a commercially available protected amino acid in very high yield, was polymerized using commercially available amine initiators. The synthesized water-soluble glycopolypeptides were found to be α-helical in aqueous solution. However, we were able to control the secondary conformation of the glycopolypeptides (α-helix vs nonhelical structures) by polymerizing racemic amino acid glyco NCAs. We have also investigated the binding of the glycopolypeptide poly(α-manno-O-lys) with the lectin Con-A using precipitation and hemagglutination assays as well as by isothermal titration calorimetry (ITC). The ITC results clearly show that the binding process is enthalpy driven for both α-helical and nonhelical structures, with negative entropic contribution. Binding stoichiometry for the glycopolypeptide poly(α-manno-O-lys) having a nonhelical structure was slightly higher as compared to the corresponding polypeptide which adopted an α-helical structure.


Asunto(s)
Glicopéptidos/síntesis química , Lectinas/química , Polímeros/síntesis química , Anhídridos/química , Glicopéptidos/química , Estructura Molecular , Polimerizacion , Polímeros/química
11.
Langmuir ; 27(19): 12124-33, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21863899

RESUMEN

Polypeptide-coated silica nanoparticles represent an interesting class of organic-inorganic hybrids since the ordered secondary structure of the polypeptide grafts imparts functional properties to these nanoparticles. The synthesis of a poly-l-glutamic acid (PLGA) silica nanoparticle hybrid by employing N-carboxyanhydride (NCA) polymerization to synthesize the polypeptide chains and Cu catalyzed azide alkyne cycloaddition reaction to graft these chains onto the silica surface is reported. This methodology enables the synthesis of well-defined polypeptide chains that are attached onto the silica surface at high surface densities. The PLGA-silica conjugate particles are well dispersed in water, and have been thoroughly characterized using multinuclear ((13)C, (29)Si) solid state NMR, thermogravimetric analysis, Fourier transform infrared, dynamic light scattering, and transmission electron microscopy. The pH-dependent reversible aggregation of the PLGA-silica particles, driven by the change in PLGA structure, has also been studied. Preliminary results on the use of aqueous dispersions of silica-PLGA for the preparation of three-dimensional macroporous structures with oriented pores by ice templating methodology are also demonstrated. These macroporous materials, comprising a biocompatible polymer shell covalently attached to rigid inorganic cores, adopts an interesting lamellar structure with fishbone-type architecture.


Asunto(s)
Nanopartículas/química , Ácido Poliglutámico/síntesis química , Dióxido de Silicio/química , Estructura Molecular , Tamaño de la Partícula , Ácido Poliglutámico/química , Porosidad , Propiedades de Superficie
12.
Chem Sci ; 11(43): 11877-11885, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34094416

RESUMEN

An efficient electrochemical method for the selective oxidation of C-H bonds of unactivated alkanes (BDE ≤97 kcal mol-1) and C[double bond, length as m-dash]C bonds of alkenes using a biomimetic iron complex, [(bTAML)FeIII-OH2]-, as the redox mediator in an undivided electrochemical cell with inexpensive carbon and nickel electrodes is reported. The O-atom of water remains the source of O-incorporation in the product formed after oxidation. The products formed upon oxidation of C-H bonds display very high regioselectivity (75 : 1, 3° : 2° for adamantane) and stereo-retention (RC ∼99% for cyclohexane derivatives). The substrate scope includes natural products such as cedryl acetate and ambroxide. For alkenes, epoxides were obtained as the sole product. Mechanistic studies show the involvement of a high-valent oxoiron(v) species, [(bTAML)FeV(O)]- formed via PCET (overall 2H+/2e-) from [(bTAML)FeIII-OH2]- in CPE at 0.80 V (vs. Ag/AgNO3). Moreover, electrokinetic studies for the oxidation of C-H bonds indicate a second-order reaction with the C-H abstraction by oxoiron(v) being the rate-determining step.

13.
Chempluschem ; 85(5): 1053-1064, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32449828

RESUMEN

An easy synthetic strategy was developed to synthesize the phosphate-functionalized amino acid N-carboxyanhydride (NCA), using simple primary amine initiators to obtain homo and block phospho-polypeptides with controlled molecular weight and molecular weight distribution. The methodology was extended to the synthesis of the end-functionalized homo polypeptides (15 to 50 repeat unit) and block co-polypeptides with PEG (0.7 K, 2 K, and 5 K) and glycopolypeptide (15-unit mannose glycopolypeptide) as one of the blocks. The deprotected fully water-soluble anionic phosphate-based polypeptides showed pH-dependent helical conformation with a helical content of 20 %, which further changed to ß-sheets upon addition of the enzyme alkaline phosphatase (ALP) due to dephosphorylation. The block co-polypeptide containing PEG as one of the blocks led to its self-assembly into colloidal structures, such as vesicles with a hydrodynamic diameter of ∼250 nm, due to the formation of amphiphilic block co-polymer upon dephosphorylation. The nature of the colloidal structures formed can be temporally controlled by the extent of dephosphorylation. Finally, the phospho-polypeptides serve as a template for the mineralization of calcium carbonate with varying polymorphs and morphologies.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Carbonato de Calcio/química , Fosfopéptidos/química , Aminas/química , Dicroismo Circular , Concentración de Iones de Hidrógeno , Fosfopéptidos/síntesis química , Polietilenglicoles/química , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta
14.
ACS Appl Bio Mater ; 2(10): 4162-4172, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-35021431

RESUMEN

pH-responsive "supra-amphiphiles" based on double hydrophilic, positively charged block copolypeptides such as PEG-b-poly-l-lysine together with low molecular weight stimuli-sensitive partners that contain phosphate and carboxylate groups have been widely studied. In contrast, the other widely used cationic polypeptide poly-l-arginine whose cell-penetrating properties are well-known has been much less explored for the synthesis of supra-amphiphile-based nanomaterials. It is also known that the guanidine side chain of arginine binds to carboxylate anions with binding constants that are 2.5 times higher than the corresponding amines of poly-l-lysine. Here, we demonstrate the fabrication of pH-sensitive supra-amphiphilic nanoparticles by simple mixing of PEG2k-b-poly(homoarginine) block copolymer and carboxylic acid containing functional low molecular weight organic compounds. A high yielding three-step methodology was developed for the synthesis of ε-N,N'-di-Boc-l-homoarginine-α-N-carboxyanhydride which was polymerized using amine-terminated PEG (2000 MW) to yield 100% guanine-functionalized polypeptide (PEG2k-b-PHR30) with controlled molecular weights and low PDIs. Incubation of PEG2k-b-PHR30 with four different carboxylic acids (including dexamethasone a glucocorticoid receptor used in cancer therapy) in water leads to the formation of "supra-amphiphilic" nanoparticles (<200 nm size) due to the charge neutralization resulting from the strong interaction between the guanidine group and the carboxylate group. All these nanoparticles were able to encapsulate the hydrophobic dye Nile red with varying efficiency. Although these assemblies were stable at neutral pH, upon lowering the pH of the solution between 4 and 5, the protonation of the carboxylic acids leads to disassembly of these nanoparticles. The cytotoxicity of all four "supra-amphiphilic" nanoparticles varied depending on the carboxylic acid used for their fabrication. While the nanoparticle formed using dioctylbenzoic acid displayed 80% cell viability at concentration of 60 µg/mL, those formed with the steroid deoxycholic acid or dexamethasone showed only 40% cell viability at similar concentrations. Colocalization studies performed using epifluorescence microscopy demonstrate the successful uptake of intact dye-encapsulated nanoparticle inside the cell.

15.
Chem Sci ; 8(11): 7545-7551, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29163909

RESUMEN

The iron complex [(bTAML)FeIII-OH2]- (1) selectively catalyses the photocatalytic hydroxylation and epoxidation reactions of alkanes and alkenes, respectively, using water as the oxygen-atom source. Upon the oxidation of unactivated alkanes, which included several substrates including natural products, hydroxylation was observed mostly at the 3° C-H bonds with 3° : 2° selectivity up to ∼100 : 1. When alkenes were used as the substrates, epoxides were predominantly formed with high yields. In the presence of H218O, more than 90% of the 18O-labelled oxygen atoms were incorporated into the hydroxylated and epoxide product indicating that water was the primary oxygen source. Mechanistic studies indicate the formation of an active [{(bTAML)FeIV}2-µ-oxo]2- (2) dimer from the starting complex 1via PCET. The subsequent disproportionation of 2 upon addition of substrate, leading to the formation of FeV(O), renders the high selectivity observed in these reactions.

16.
Chempluschem ; 82(2): 225-232, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31961537

RESUMEN

Reported is a modular approach for the incorporation and stabilization of gold nanoparticles inside a three-dimensional macroporous hydrogel made of ferritin. The strategy, which involves the dynamic templating of surfactant H1 domains, demineralization, and remineralization helps to overcome aggregation and degradation issues usually associated with bare-metal-based nanocatalysts. The catalytic activity of the so-synthesized bionanocomposite hydrogel was demonstrated in both nitroaldol (Henry) and nitroreduction model reactions in aqueous solution at room temperature. An interesting synergistic effect between basic residues of the protein and the gold nanoparticles was found in the nitroaldol reaction when carried out in water in the presence of a phase-transfer catalyst. Furthermore, the reduction of 4-nitrophenol and 4-nitroaniline catalyzed by the nanocomposite scaffold in the presence of NaBH4 proceeded significantly faster than that using other known Au- and Ag-based catalysts under similar conditions.

17.
ACS Macro Lett ; 5(7): 809-813, 2016 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35614754

RESUMEN

The ubiquitous expression of the mannose-6-phosphate receptor on the majority of human cells makes it a valid target in the quest to deliver therapeutics selectively to the lysosome. In this work end-functionalized polyvalent mannose-6-phosphate glycopolypeptides (M6P-GPs) with high molecular weights (up to 22 kDa) have been synthesized via NCA polymerization. These synthetic M6P-GPs were found to display minimal toxicity to cells in vitro and show exceptional selectivity for trafficking into lysosomes in various cell lines. Comparison of the cellular uptake behavior of M6P-GP and the corresponding mannose-GP polymer reveals that incorporation of the phosphate moiety at the 6-position of mannose completely alters its trafficking behavior and becomes exclusively lysosome specific. We also demonstrate that trafficking of M6P-GPs in mammalian cells is likely associated with the CI-MPR receptor pathway.

18.
Chem Commun (Camb) ; 49(22): 2216-8, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23392230

RESUMEN

Catalytic signal amplification was used for the colorimetric detection of CN(-) in aqueous media by using the enzyme catalase in tandem with mesoporous silica nanoparticle based synthetic HRP enzyme mimic Fe-MSNs. Signal amplification up to a maximum of eight fold was observed for the reporter "oxidized TMB" with respect to the added CN(-) ion.


Asunto(s)
Amidas/química , Biuret/química , Catalasa/química , Cianuros/análisis , Compuestos Férricos/química , Nanopartículas/química , Dióxido de Silicio/química , Catalasa/metabolismo , Catálisis , Colorimetría , Estructura Molecular , Porosidad , Propiedades de Superficie
19.
Chem Commun (Camb) ; 48(63): 7853-5, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22786692

RESUMEN

Trypsin has been encapsulated in the mesopores of a hierarchical mesoporous silica material synthesized via Cu(I) catalyzed azide-alkyne click reaction between azide functionalized large spherical SBA-15 particles and alkyne functionalized mesoporous silica nanoparticles (MSNs). Encapsulated trypsin functions as an efficient biocatalyst and can be recycled several times.


Asunto(s)
Tripsina/química , Alquinos/química , Azidas/química , Catálisis , Química Clic , Cobre/química , Nanopartículas/química , Porosidad , Dióxido de Silicio/química , Tripsina/metabolismo
20.
Chem Commun (Camb) ; 48(43): 5289-91, 2012 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-22446974

RESUMEN

An [Fe(III)(biuret-amide)] complex has been immobilized onto mesoporous silica nanoparticles via Cu(I) catalyzed azide-alkyne click chemistry. This hybrid material functions as an efficient peroxidase mimic and was successfully used for the quantitative determination of hydrogen peroxide and glucose via a one-pot colorimetric assay.


Asunto(s)
Materiales Biomiméticos/metabolismo , Biuret/análogos & derivados , Colorimetría , Complejos de Coordinación/química , Compuestos Férricos/química , Glucosa/análisis , Nanopartículas/química , Dióxido de Silicio/química , Materiales Biomiméticos/química , Biuret/síntesis química , Biuret/química , Química Clic , Complejos de Coordinación/metabolismo , Compuestos Férricos/síntesis química , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Peróxido de Hidrógeno/análisis , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA