Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 381, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222083

RESUMEN

Epigenetic modifications (methylation, acetylation, etc.) of core histones play a key role in regulation of gene expression. Thus, the epigenome changes strongly during various biological processes such as cell differentiation and dedifferentiation. Classical methods of analysis of epigenetic modifications such as mass-spectrometry and chromatin immuno-precipitation, work with fixed cells only. Here we present a genetically encoded fluorescent probe, MPP8-Green, for detecting H3K9me3, a histone modification associated with inactive chromatin. This probe, based on the chromodomain of MPP8, allows for visualization of H3K9me3 epigenetic landscapes in single living cells. We used this probe to track changes in H3K9me3 landscapes during the differentiation of induced pluripotent stem cells (iPSCs) into induced neurons. Our findings revealed two major waves of global H3K9me3 reorganization during 4-day differentiation, namely on the first and third days, whereas nearly no changes occurred on the second and fourth days. The proposed method LiveMIEL (Live-cell Microscopic Imaging of Epigenetic Landscapes), which combines genetically encoded epigenetic probes and machine learning approaches, enables classification of multiparametric epigenetic signatures of single cells during stem cell differentiation and potentially in other biological models.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Colorantes Fluorescentes , Histonas , Células Madre Pluripotentes Inducidas , Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Histonas/metabolismo , Histonas/genética , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Neuronas/metabolismo , Neuronas/citología , Animales , Ratones
2.
Biochem Biophys Res Commun ; 733: 150715, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39317113

RESUMEN

Post-translational modifications of histones play a crucial role in chromatin structure maintenance and epigenetic regulation. The LiveMIEL (Live-cell Microscopic Imaging of Epigenetic Landscape) method represents a promising approach for tracking histone modifications. It involves visualization of epigenetic modifications using genetically encoded fluorescent sensors and further analysis of the obtained intranuclear patterns by multiparametric image analysis. In this study, we designed three new red fluorescent sensors-MPP8-Red, AF9-Red and DPF3-Red-for live-cell visualization of patterns of H3K9me3, H3K8ac and H3K4me1, respectively. The observed fluorescent patterns were visually distinguishable, and LiveMIEL analysis clearly classified them into three corresponding groups. We propose that these sensors can be used for live-cell dynamic analysis of changes in organization of three epigenetic types of chromatin.

3.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474236

RESUMEN

Epidermolysis bullosa simplex (EBS) is a dermatological condition marked by skin fragility and blister formation resulting from separation within the basal layer of the epidermis, which can be attributed to various genetic etiologies. This study presents three pathogenic de novo variants in young children, with clinical manifestations appearing as early as the neonatal period. The variants contribute to the EBS phenotype through two distinct mechanisms: direct keratin abnormalities due to pathogenic variants in the Krt14 gene, and indirect effects via pathogenic mutation in the KLHL24 gene, which interfere with the natural proteasome-mediated degradation pathway of KRT14. We report one severe case of EBS with mottled pigmentation arising from the Met119Thr pathogenic variant in KRT14, another case involving a pathogenic KLHL24 Met1Val variant, and a third case featuring the hot spot mutation Arg125His in KRT14, all manifesting within the first few weeks of life. This research underscores the complexity of genetic influences in EBS and highlights the importance of early genetic screening for accurate diagnosis and management.


Asunto(s)
Epidermólisis Ampollosa Simple , Niño , Recién Nacido , Humanos , Preescolar , Epidermólisis Ampollosa Simple/genética , Mutación , Fenotipo , Queratinas/genética , Epidermis/patología , Queratina-5/genética
4.
Biochem Biophys Res Commun ; 687: 149174, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37939505

RESUMEN

Post-translational modifications of histones to a large extent determine the functional state of chromatin loci. Dynamic visualization of histone modifications with genetically encoded fluorescent sensors makes it possible to monitor changes in the epigenetic state of a single living cell. At the same time, the sensors can potentially compete with endogenous factors recognizing these modifications. Thus, prolonged binding of the sensors to chromatin can affect normal epigenetic regulation. Here, we report an optogenetic sensor for live-cell visualization of histone H3 methylated at lysine-9 (H3K9me3) named MPP8-LAMS (MPP8-based light-activated modification sensor). MPP8-LAMS consists of several fusion protein parts (from N- to C-terminus): i) nuclear export signal (NES), ii) far-red fluorescent protein Katushka, iii) H3K9me3-binding reader domain of the human M phase phosphoprotein 8 (MPP8), iv) the light-responsive AsLOV2 domain, which exposes a nuclear localization signal (NLS) upon blue light stimulation. In the dark, due to the NES, MPP8-LAMS is localized in the cytosol. Under blue light illumination, MPP8-LAMS underwent an efficient translocation from cytosol to nucleus, enabling visualization of H3K9me3-enriched loci. Such an on-demand visualization minimizes potential impact on cell physiology as most of the time the sensor is separated from its target. In general, the present work extends the application of optogenetics to the area of advanced use of genetically encoded sensors.


Asunto(s)
Histonas , Optogenética , Humanos , Histonas/genética , Histonas/metabolismo , Epigénesis Genética , Cromatina , Procesamiento Proteico-Postraduccional , Colorantes
5.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175601

RESUMEN

The limited ability of mammals to regenerate has garnered significant attention, particularly in regard to skin wound healing (WH), which is a critical step for regeneration. In human adults, skin WH results in the formation of scars following injury or trauma, regardless of severity. This differs significantly from the scarless WH observed in the fetal skin of mammals or anamniotes. This review investigates the role of molecular players involved in scarless WH, which are lost or repressed in adult mammalian WH systems. Specifically, we analyze the physiological role of Anterior Gradient (AGR) family proteins at different stages of the WH regulatory network. AGR is activated in the regeneration of lower vertebrates at the stage of wound closure and, accordingly, is important for WH. Mammalian AGR2 is expressed during scarless WH in embryonic skin, while in adults, the activity of this gene is normally inhibited and is observed only in the mucous epithelium of the digestive tract, which is capable of full regeneration. The combination of AGR2 unique potencies in postnatal mammals makes it possible to consider it as a promising candidate for enhancing WH processes.


Asunto(s)
Cicatriz , Cicatrización de Heridas , Animales , Humanos , Cicatrización de Heridas/fisiología , Cicatriz/patología , Piel/patología , Mamíferos , Epitelio/patología , Mucoproteínas/genética , Proteínas Oncogénicas/genética
6.
Nat Methods ; 15(8): 601-604, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988095

RESUMEN

Reversibly photoswitchable fluorescent proteins (rsFPs) are gaining popularity as tags for optical nanoscopy because they make it possible to image with lower light doses. However, green rsFPs need violet-blue light for photoswitching, which is potentially phototoxic and highly scattering. We developed new rsFPs based on FusionRed that are reversibly photoswitchable with green-orange light. The rsFusionReds are bright and exhibit rapid photoswitching, thereby enabling nanoscale imaging of living cells.


Asunto(s)
Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Línea Celular , Humanos , Microscopía Intravital/métodos , Cinética , Luz , Microscopía Fluorescente/métodos , Nanotecnología , Procesos Fotoquímicos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Espectrofotometría , Proteína Fluorescente Roja
7.
Cell Mol Life Sci ; 77(21): 4429-4440, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31894363

RESUMEN

Fluorescent proteins are commonly used to label target proteins in live cells. However, the conventional approach based on covalent fusion of targeted proteins with fluorescent protein probes is limited by the slow rate of fluorophore maturation and irretrievable loss of fluorescence due to photobleaching. Here, we report a genetically encoded protein labeling system utilizing transient interactions of small, 21-28 residues-long helical protein tags (K/E coils, KEC). In this system, a protein of interest, covalently tagged with a single coil, is visualized through binding to a cytoplasmic fluorescent protein carrying a complementary coil. The reversible heterodimerization of KECs, whose affinity can be tuned in a broad concentration range from nanomolar to micromolar, allows continuous exchange and replenishment of the tag bound to a targeted protein with the entire cytosolic pool of soluble fluorescent coils. We found that, under conditions of partial illumination of living cells, the photostability of labeling with KECs exceeds that of covalently fused fluorescent probes by approximately one order of magnitude. Similarly, single-molecule localization microscopy with KECs provided higher labeling density and allowed a much longer duration of imaging than with conventional fusion to fluorescent proteins. We also demonstrated that this method is well suited for imaging newly synthesized proteins, because the labeling efficiency by KECs is not dependent on the rate of fluorescent protein maturation. In conclusion, KECs can be used to visualize various target proteins which are directly exposed to the cytosol, thereby enabling their advanced characterization in time and space.


Asunto(s)
Colorantes Fluorescentes/química , Proteínas/análisis , Animales , Línea Celular , Supervivencia Celular , Células HEK293 , Células HeLa , Humanos , Proteínas Luminiscentes/análisis , Ratones , Microscopía Fluorescente , Imagen Óptica , Fotólisis , Multimerización de Proteína , Ratas , Coloración y Etiquetado
8.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34830328

RESUMEN

Epidermolysis bullosa simplex (EBS) is a group of inherited keratinopathies that, in most cases, arise due to mutations in keratins and lead to intraepidermal ruptures. The cellular pathology of most EBS subtypes is associated with the fragility of the intermediate filament network, cytolysis of the basal layer of the epidermis, or attenuation of hemidesmosomal/desmosomal components. Mutations in keratins 5/14 or in other genes that encode associated proteins induce structural disarrangements of different strengths depending on their locations in the genes. Keratin aggregates display impaired dynamics of assembly and diminished solubility and appear to be the trigger for endoplasmic reticulum (ER) stress upon being phosphorylated by MAPKs. Global changes in cellular signaling mainly occur in cases of severe dominant EBS mutations. The spectrum of changes initiated by phosphorylation includes the inhibition of proteasome degradation, TNF-α signaling activation, deregulated proliferation, abnormal cell migration, and impaired adherence of keratinocytes. ER stress also leads to the release of proinflammatory danger-associated molecular pattern (DAMP) molecules, which enhance avalanche-like inflammation. Many instances of positive feedback in the course of cellular stress and the development of sterile inflammation led to systemic chronic inflammation in EBS. This highlights the role of keratin in the maintenance of epidermal and immune homeostasis.


Asunto(s)
Alarminas/genética , Epidermis/metabolismo , Epidermólisis Ampollosa Simple/genética , Queratina-14/genética , Queratina-5/genética , Queratinocitos/metabolismo , Alarminas/metabolismo , Estrés del Retículo Endoplásmico/genética , Epidermis/patología , Epidermólisis Ampollosa Simple/metabolismo , Epidermólisis Ampollosa Simple/patología , Regulación de la Expresión Génica , Humanos , Inflamación , Filamentos Intermedios/metabolismo , Filamentos Intermedios/patología , Filamentos Intermedios/ultraestructura , Queratina-14/metabolismo , Queratina-5/metabolismo , Queratinocitos/patología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Proteolisis , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
9.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33916959

RESUMEN

The recessive form of dystrophic epidermolysis bullosa (RDEB) is a crippling disease caused by impairments in the junctions of the dermis and the basement membrane of the epidermis. Using ectopic expression of hTERT/hTERT + BMI-1 in primary cells, we developed expansible cultures of RDEB fibroblasts and keratinocytes. We showed that they display the properties of their founders, including morphology, contraction ability and expression of the respective specific markers including reduced secretion of type VII collagen (C7). The immortalized keratinocytes retained normal stratification in 3D skin equivalents. The comparison of secreted protein patterns from immortalized RDEB and healthy keratinocytes revealed the differences in the contents of the extracellular matrix that were earlier observed specifically for RDEB. We demonstrated the possibility to reverse the genotype of immortalized cells to the state closer to the progenitors by the Cre-dependent hTERT switch off. Increased ß-galactosidase activity and reduced proliferation of fibroblasts were shown after splitting out of transgenes. We anticipate our cell lines to be tractable models for studying RDEB from the level of single-cell changes to the evaluation of 3D skin equivalents. Our approach permits the creation of standardized and expandable models of RDEB that can be compared with the models based on primary cell cultures.


Asunto(s)
Fibroblastos/metabolismo , Recombinación Homóloga , Integrasas/metabolismo , Queratinocitos/metabolismo , Telomerasa/genética , Transgenes , Adolescente , Adulto , Biomarcadores , Línea Celular Transformada , Proliferación Celular , Senescencia Celular/genética , Niño , Epidermólisis Ampollosa Distrófica/etiología , Epidermólisis Ampollosa Distrófica/metabolismo , Femenino , Fibroblastos/patología , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Orden Génico , Vectores Genéticos/genética , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Mutación , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Cultivo Primario de Células , Proteómica/métodos , Telomerasa/metabolismo , Adulto Joven
10.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670258

RESUMEN

The recessive form of dystrophic epidermolysis bullosa (RDEB) is a debilitating disease caused by impairments in the junctions of the dermis and the basement membrane of the epidermis. Mutations in the COL7A1 gene induce multiple abnormalities, including chronic inflammation and profibrotic changes in the skin. However, the correlations between the specific mutations in COL7A1 and their phenotypic output remain largely unexplored. The mutations in the COL7A1 gene, described here, were found in the DEB register. Among them, two homozygous mutations and two cases of compound heterozygous mutations were identified. We created the panel of primary patient-specific RDEB fibroblast lines (FEB) and compared it with control fibroblasts from healthy donors (FHC). The set of morphological features and the contraction capacity of the cells distinguished FEB from FHC. We also report the relationships between the mutations and several phenotypic traits of the FEB. Based on the analysis of the available RNA-seq data of RDEB fibroblasts, we performed an RT-qPCR gene expression analysis of our cell lines, confirming the differential status of multiple genes while uncovering the new ones. We anticipate that our panels of cell lines will be useful not only for studying RDEB signatures but also for investigating the overall mechanisms involved in disease progression.


Asunto(s)
Colágeno Tipo VII , Dermis , Epidermólisis Ampollosa Distrófica , Fibroblastos , Regulación de la Expresión Génica , Homocigoto , Mutación , Adolescente , Adulto , Niño , Colágeno Tipo VII/biosíntesis , Colágeno Tipo VII/genética , Dermis/metabolismo , Dermis/patología , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/metabolismo , Epidermólisis Ampollosa Distrófica/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA