Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38961844

RESUMEN

Chronic kidney disease (CKD) is associated with renal lipid dysmetabolism among a variety of other pathways. We recently demonstrated that oxysterol-binding protein like 7 (OSBPL7) modulates the expression and function of ATP Binding Cassette Subfamily A Member 1 (ABCA1) in podocytes, a specialized type of cell essential for kidney filtration. Drugs that target OSBPL7 lead to improved renal outcomes in several experimental models of CKD. However, the role of OSBPL7 in podocyte injury remains unclear. Employing mouse models and cellular assays, we investigated the influence of OSBPL7 deficiency on podocytes. We demonstrated that reduced renal OSBPL7 levels as observed in two different models of experimental CKD are linked to increased podocyte apoptosis, primarily mediated by heightened endoplasmic reticulum (ER) stress. While as expected the absence of OSBPL7 also resulted in lipid dysregulation (increased lipid droplets and triglycerides content), OSBPL7-deficiency related lipid dysmetabolism did not contribute to podocyte injury. Similarly, we demonstrated that the decreased autophagic flux we observed in OSBPL7-deficient podocytes was not the mechanistic link between OSBPL7-deficiency and apoptosis. In a complementary zebrafish model, osbpl7 knockdown was sufficient to induce proteinuria and morphological damage to the glomerulus, underscoring its physiological relevance. Our study shed new light on the mechanistic link between OSBPL7 deficiency and podocyte injury in glomerular diseases associated with CKD, and it strengthen the role of OSBPL7 as a novel therapeutic target.

2.
J Am Soc Nephrol ; 33(12): 2153-2173, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36198430

RESUMEN

BACKGROUND: The signaling molecule stimulator of IFN genes (STING) was identified as a crucial regulator of the DNA-sensing cyclic GMP-AMP synthase (cGAS)-STING pathway, and this signaling pathway regulates inflammation and energy homeostasis under conditions of obesity, kidney fibrosis, and AKI. However, the role of STING in causing CKD, including diabetic kidney disease (DKD) and Alport syndrome, is unknown. METHODS: To investigate whether STING activation contributes to the development and progression of glomerular diseases such as DKD and Alport syndrome, immortalized human and murine podocytes were differentiated for 14 days and treated with a STING-specific agonist. We used diabetic db/db mice, mice with experimental Alport syndrome, C57BL/6 mice, and STING knockout mice to assess the role of the STING signaling pathway in kidney failure. RESULTS: In vitro, murine and human podocytes express all of the components of the cGAS-STING pathway. In vivo, activation of STING renders C57BL/6 mice susceptible to albuminuria and podocyte loss. STING is activated at baseline in mice with experimental DKD and Alport syndrome. STING activation occurs in the glomerular but not the tubulointerstitial compartment in association with autophagic podocyte death in Alport syndrome mice and with apoptotic podocyte death in DKD mouse models. Genetic or pharmacologic inhibition of STING protects from progression of kidney disease in mice with DKD and Alport syndrome and increases lifespan in Alport syndrome mice. CONCLUSION: The activation of the STING pathway acts as a mediator of disease progression in DKD and Alport syndrome. Targeting STING may offer a therapeutic option to treat glomerular diseases of metabolic and nonmetabolic origin or prevent their development, progression, or both.


Asunto(s)
Nefropatías Diabéticas , Nefritis Hereditaria , Podocitos , Ratones , Humanos , Animales , Nefritis Hereditaria/genética , Nefritis Hereditaria/metabolismo , Ratones Endogámicos C57BL , Podocitos/metabolismo , Proteinuria/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Ratones Noqueados , Nucleotidiltransferasas/metabolismo
3.
Am J Physiol Cell Physiol ; 322(3): C468-C481, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108119

RESUMEN

Advances in the understanding of lipid droplet biology have revealed essential roles for these organelles in mediating proper cellular homeostasis and stress response. Lipid droplets were initially thought to play a passive role in energy storage. However, recent studies demonstrate that they have substantially broader functions, including protection from reactive oxygen species, endoplasmic reticulum stress, and lipotoxicity. Dysregulation of lipid droplet homeostasis is associated with various pathologies spanning neurological, metabolic, cardiovascular, oncological, and renal diseases. This review provides an overview of the current understanding of lipid droplet biology in both health and disease.


Asunto(s)
Gotas Lipídicas , Metabolismo de los Lípidos , Estrés del Retículo Endoplásmico , Homeostasis , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/fisiología
4.
Methods Mol Biol ; 2625: 163-174, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36653642

RESUMEN

Lipid droplets (LDs), initially thought to be mere lipid storage structures, are highly dynamic organelles with complex functions that control cell fate and behavior. In recent years, their relevance as therapeutic targets for a wide array of human diseases has been well established. Consequently, efforts to develop tools to study them have intensified, including assays that can accurately track LD levels in clinically relevant cell-based models. We previously reported that LD accumulation destines podocytes for lipotoxicity and cell death in renal diseases of metabolic and nonmetabolic origin. We also showed that LD accumulation in those cells serves as both a marker for disease progression and as a therapeutic target. Here, we describe a robust phenotypic screening method, using differentiated human podocytes, for identifying small-molecule compounds that rescue podocytes from LD accumulation and lipotoxicity under cellular stress. Major assay advances include 1) the use of a solvatochromic dye to improve LD staining, reduce background noise, and improve detection accuracy, 2) use of confocal imaging to reduce vertical overlap of LDs and enable accurate counting, 3) combining membrane and cytoskeleton stains to improve cell segmentation in confocal mode, and 4) use of an optimized spot detection algorithm that requires minimal configuration per individual run. The assay is robust and yields a Z-factor that is consistently >0.5.


Asunto(s)
Enfermedades Renales , Podocitos , Humanos , Gotas Lipídicas/metabolismo , Podocitos/metabolismo , Diferenciación Celular , Enfermedades Renales/metabolismo , Metabolismo de los Lípidos
5.
Biomolecules ; 12(3)2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35327540

RESUMEN

Mitochondrial dysfunction plays an important role in the pathogenesis and progression of diabetic kidney disease (DKD). In this review, we will discuss mitochondrial dysfunction observed in preclinical models of DKD as well as in clinical DKD with a focus on oxidative phosphorylation (OXPHOS), mitochondrial reactive oxygen species (mtROS), biogenesis, fission and fusion, mitophagy and urinary mitochondrial biomarkers. Both glucose- and non-glucose-induced mitochondrial dysfunction will be discussed. In terms of glucose-induced mitochondrial dysfunction, the energetic shift from OXPHOS to aerobic glycolysis, called the Warburg effect, occurs and the resulting toxic intermediates of glucose metabolism contribute to DKD-induced injury. In terms of non-glucose-induced mitochondrial dysfunction, we will review the roles of lipotoxicity, hypoxia and vasoactive pathways, including endothelin-1 (Edn1)/Edn1 receptor type A signaling pathways. Although the relative contribution of each of these pathways to DKD remains unclear, the goal of this review is to highlight the complexity of mitochondrial dysfunction in DKD and to discuss how markers of mitochondrial dysfunction could help us stratify patients at risk for DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Biomarcadores/metabolismo , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Masculino , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA