Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 92(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29093095

RESUMEN

HIV vaccine development is focused on designing immunogens and delivery methods that elicit protective immunity. We evaluated a combination of adenovirus (Ad) vectors expressing HIV 1086.C (clade C) envelope glycoprotein (Env), SIV Gag p55, and human pegivirus GBV-C E2 glycoprotein. We compared replicating simian (SAd7) with nonreplicating human (Ad4) adenovirus-vectored vaccines paired with recombinant proteins in a novel prime-boost regimen in rhesus macaques, with the goal of eliciting protective immunity against SHIV challenge. In both vaccine groups, plasma and buccal Env-specific IgG, tier 1 heterologous neutralizing antibodies, and antibody-dependent cell-mediated viral inhibition were readily generated. High Env-specific T cell responses elicited in all vaccinees were significantly greater than responses targeting Gag. After three intrarectal exposures to heterologous tier 1 clade C SHIV, all 10 sham-vaccinated controls were infected, whereas 4/10 SAd7- and 3/10 Ad4-vaccinated macaques remained uninfected or maintained tightly controlled plasma viremia. Time to infection was significantly delayed in SAd7-vaccinated macaques compared to the controls. Cell-associated and plasma virus levels were significantly lower in each group of vaccinated macaques compared to controls; the lowest plasma viral burden was found in animals vaccinated with the SAd7 vectors, suggesting superior immunity conferred by the replicating simian vectors. Furthermore, higher V1V2-specific binding antibody titers correlated with viral control in the SAd7 vaccine group. Thus, recombinant Ad plus protein vaccines generated humoral and cellular immunity that was effective in either protecting from SHIV acquisition or significantly reducing viremia in animals that became infected, consequently supporting additional development of replicating Ad vectors as HIV vaccines.IMPORTANCE There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV infection and limits in vivo viral replication and associated pathogenesis. Although replicating virus vectors have been advanced as HIV vaccine platforms, there have not been any direct comparisons of the replicating to the nonreplicating format. The present study directly compared the replicating SAd7 to nonreplicating Ad4 vectors in macaques and demonstrated that in the SAd7 vaccine group, the time to infection was significantly delayed compared to the control group, and V1V2 Env-specific binding antibodies correlated with viral outcomes. Viral control was significantly enhanced in vaccinated macaques compared to controls, and in infected SAd7-vaccinated macaques compared to Ad4-vaccinated macaques, suggesting that this vector may have conferred more effective immunity. Because blocking infection is so difficult with current vaccines, development of a vaccine that can limit viremia if infection occurs would be valuable. These data support further development of replicating adenovirus vectors.


Asunto(s)
Adenoviridae , Vectores Genéticos , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas Sintéticas , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos/inmunología , Recuento de Linfocito CD4 , Línea Celular , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Genotipo , VIH/inmunología , Humanos , Inmunidad Humoral , Inmunización/métodos , Estimación de Kaplan-Meier , Macaca mulatta , Masculino , Unión Proteica/inmunología , Vacunas contra el SIDAS/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Proteínas del Envoltorio Viral/inmunología , Carga Viral
2.
Clin Infect Dis ; 62(11): 1329-1335, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27001804

RESUMEN

BACKGROUND: No licensed cholera vaccine is presently available in the United States. Cholera vaccines available in other countries require 2 spaced doses. A single-dose cholera vaccine that can rapidly protect short-notice travelers to high-risk areas and help control explosive outbreaks where logistics render 2-dose immunization regimens impractical would be a major advance.PXVX0200, based on live attenuated Vibrio cholerae O1 classical Inaba vaccine strain CVD 103-HgR, elicits seroconversion of vibriocidal antibodies (a correlate of protection) within 10 days of a single oral dose. We investigated the protection conferred by this vaccine in a human cholera challenge model. METHODS: Consenting healthy adult volunteers, 18-45 years old, were randomly allocated 1:1 to receive 1 oral dose of vaccine (approximately 5 × 10(8) colony-forming units [CFU]) or placebo in double-blind fashion. Volunteers ingested approximately 1 × 10(5) CFU of wild-type V. cholerae O1 El Tor Inaba strain N16961 10 days or 3 months after vaccination and were observed on an inpatient research ward for stool output measurement and management of hydration. RESULTS: The vaccine was well tolerated, with no difference in adverse event frequency among 95 vaccinees vs 102 placebo recipients. The primary endpoint, moderate (≥3.0 L) to severe (≥5.0 L) diarrheal purge, occurred in 39 of 66 (59.1%) placebo controls but only 2 of 35 (5.7%) vaccinees at 10 days (vaccine efficacy, 90.3%; P < .0001) and 4 of 33 (12.1%) vaccinees at 3 months (vaccine efficacy, 79.5%; P < .0001). CONCLUSIONS: The significant vaccine efficacy documented 10 days and 3 months after 1 oral dose of PXVX0200 supports further development as a single-dose cholera vaccine. CLINICAL TRIALS REGISTRATION: NCT01895855.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Vacunas contra el Cólera/administración & dosificación , Vacunas contra el Cólera/inmunología , Cólera/prevención & control , Vibrio cholerae O1/inmunología , Adolescente , Adulto , Anticuerpos Antibacterianos/inmunología , Cólera/inmunología , Vacunas contra el Cólera/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
3.
Vaccine ; 42(22): 126165, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39197299

RESUMEN

The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) Working Group evaluates the safety and other key features of new platform technology vaccines, including nucleic acid (RNA and DNA) vaccines. This manuscript uses the BRAVATO template to report the key considerations for a benefit-risk assessment of the coronavirus disease 2019 (COVID-19) mRNA-based vaccine BNT162b2 (Comirnaty®, or Pfizer-BioNTech COVID-19 vaccine) including the subsequent Original/Omicron BA.1, Original/Omicron BA.4-5 and Omicron XBB.1.5 variant-adapted vaccines developed by BioNTech and Pfizer to protect against COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Initial Emergency Use Authorizations or conditional Marketing Authorizations for the original BNT162b2 vaccine were granted based upon a favorable benefit-risk assessment taking into account clinical safety, immunogenicity, and efficacy data, which was subsequently reconfirmed for younger age groups, and by real world evidence data. In addition, the favorable benefit-risk assessment was maintained for the bivalent vaccines, developed against newly arising SARS-CoV-2 variants, with accumulating clinical trial data.


Asunto(s)
Vacuna BNT162 , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Vacunas de ARNm , Humanos , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Vacuna BNT162/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Medición de Riesgo , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología , Inmunogenicidad Vacunal
4.
Vaccine ; 41(45): 6762-6773, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37739888

RESUMEN

Novavax, a global vaccine company, began evaluating NVX-CoV2373 in human studies in May 2020 and the pivotal placebo-controlled phase 3 studies started in November 2020; five clinical studies provided adult and adolescent clinical data for over 31,000 participants who were administered NVX-CoV2373. This extensive data has demonstrated a well-tolerated response to NVX-CoV2373 and high vaccine efficacy against mild, moderate, or severe COVID-19 using a two-dose series (Dunkle et al., 2022) [1], (Heath et al., 2021) [2], (Keech et al., 2020) [3], (Mallory et al., 2022) [4]. The most common adverse events seen after administration with NVX-CoV2373 were injection site tenderness, injection site pain, fatigue, myalgia, headache, malaise, arthralgia, nausea, or vomiting. In addition, immunogenicity against variants of interest (VOI) and variants of concern (VOC) was established with high titers of ACE2 receptor-inhibiting and neutralizing antibodies in these studies (EMA, 2022) [5], (FDA, 2023) [6]. Further studies on correlates of protection determined that titers of anti-Spike IgG and neutralizing antibodies correlated with efficacy against symptomatic COVID-19 established in clinical trials (p < 0.001 for recombinant protein vaccine and p = 0.005 for mRNA vaccines for IgG levels) (Fong et al., 2022) [7]. Administration of a booster dose of the recombinant protein vaccine approximately 6 months following the primary two-dose series resulted in substantial increases in humoral antibodies against both the prototype strain and all evaluated variants, similar to or higher than the antibody levels observed in phase 3 studies that were associated with high vaccine efficacy (Dunkle et al., 2022) [1], (Mallory et al., 2022) [4]. These findings, together with the well tolerated safety profile, support use of the recombinant protein vaccine as primary series and booster regimens.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adolescente , Adulto , Humanos , Vacunas contra la COVID-19/efectos adversos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/prevención & control , Adyuvantes Inmunológicos , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/genética , Anticuerpos Neutralizantes , Medición de Riesgo , Inmunoglobulina G , Anticuerpos Antivirales , Inmunogenicidad Vacunal
5.
Vaccine ; 41(15): 2615-2629, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36925422

RESUMEN

The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) Working Group has prepared standardized templates to describe the key considerations for the benefit-risk assessment of several vaccine platform technologies, including protein subunit vaccines. This article uses the BRAVATO template to review the features of the MVC-COV1901 vaccine, a recombinant protein subunit vaccine based on the stabilized pre-fusion SARS-CoV-2 spike protein S-2P, adjuvanted with CpG 1018 and aluminum hydroxide, manufactured by Medigen Vaccine Biologics Corporation in Taiwan. MVC-COV1901 vaccine is indicated for active immunization to prevent COVID-19 caused by SARS-CoV-2 in individuals 12 years of age and older. The template offers details on basic vaccine information, target pathogen and population, characteristics of antigen and adjuvant, preclinical data, human safety and efficacy data, and overall benefit-risk assessment. The clinical development program began in September 2020 and based on demonstration of favorable safety and immunogenicity profiles in 11 clinical trials in over 5,000 participants, it has been approved for emergency use based on immunobridging results for adults in Taiwan, Estwatini, Somaliland, and Paraguay. The main clinical trials include placebo-controlled phase 2 studies in healthy adults (CT-COV-21), adolescents (CT-COV-22), and elderly population (CT-COV-23) as well as 3 immunobridging phase 3 trials (CT-COV-31, CT-COV-32, and CT-COV-34) in which MVC-COV1901 was compared to AZD1222. There are also clinical trials studying MVC-COV1901 as homologous and heterologous boosters (CT-COV-24 and CT-COV-25). The totality of evidence based on ∼3 million vaccinees to date includes a mostly clean safety profile, with adverse events mostly being mild and self-limiting in both clinical development and post-marketing experience, proven immunogenic response, and real-world effectiveness data. The immunogenic profile demonstrates that MVC-COV1901 induces high levels of neutralizing and binding antibodies against SARS-CoV-2. There is a dose-dependent response and a significant correlation between binding and neutralizing antibody activity. Antigen-specific T-cell responses, particularly a Th1-biased immune response characterized by high levels of interferon gamma and IL-2 cytokines, have also been observed. Coupled with this, MVC-COV1901 has favorable thermostability and better safety profiles when compared to other authorized vaccines from different platforms, which make it potentially a good candidate for vaccine supply chains in global markets.


Asunto(s)
COVID-19 , Vacunas Virales , Adulto , Adolescente , Humanos , Anciano , COVID-19/prevención & control , SARS-CoV-2 , ChAdOx1 nCoV-19 , Anticuerpos Neutralizantes , Adyuvantes Inmunológicos , Vacunas Sintéticas , Medición de Riesgo , Anticuerpos Antivirales , Inmunogenicidad Vacunal
6.
J Infect Dis ; 204(9): 1395-402, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21921208

RESUMEN

INTRODUCTION: LC16m8 is an attenuated cell culture-adapted Lister vaccinia smallpox vaccine missing the B5R protein and licensed for use in Japan. METHODS: We conducted a phase I/II clinical trial that compared the safety and immunogenicity of LC16m8 with Dryvax in vaccinia-naive participants. Adverse events were assessed, as were electrocardiography and laboratory testing for cardiotoxicity and viral culturing of the vaccination sites. Neutralization titers to vaccinia, monkeypox, and variola major were assessed and cell-mediated immune responses were measured by interferon (IFN)-γ enzyme-linked immunosorbent spot and lymphoproliferation assays. RESULTS: Local and systemic reactions after vaccination with LC16m8 were similar to those reported after Dryvax. No clinically significant abnormalities consistent with cardiac toxicity were seen for either vaccine. Both vaccines achieved antivaccinia, antivariola, and antimonkeypox neutralizing antibody titers >1:40, although the mean plaque reduction neutralization titer of LC16m8 at day 30 after vaccination was significantly lower than Dryvax for anti-NYCBH vaccinia (P < .01), antimonkeypox (P < .001), and antivariola (P < .001). LC16m8 produced robust cellular immune responses that trended higher than Dryvax for lymphoproliferation (P = .06), but lower for IFN-γ ELISPOT (P = .02). CONCLUSIONS: LC16m8 generates neutralizing antibody titers to multiple poxviruses, including vaccinia, monkeypox, and variola major, and broad T-cell responses, indicating that LC16m8 may have efficacy in protecting individuals from smallpox. Clinical Trials Registration. NCT00103584.


Asunto(s)
Vacuna contra Viruela/efectos adversos , Vacuna contra Viruela/inmunología , Viruela/prevención & control , Adolescente , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Proliferación Celular , Citocinas/metabolismo , Femenino , Humanos , Japón , Leucocitos Mononucleares/inmunología , Masculino , Monkeypox virus/inmunología , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/inmunología , Virus Vaccinia/inmunología , Virus de la Viruela/inmunología , Adulto Joven
7.
Vaccine ; 40(35): 5263-5274, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35715351

RESUMEN

Inactivated viral vaccines have long been used in humans for diseases of global health threat (e.g., poliomyelitis and pandemic and seasonal influenza) and the technology of inactivation has more recently been used for emerging diseases such as West Nile, Chikungunya, Ross River, SARS and especially for COVID-19. The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) Working Group has prepared standardized templates to describe the key considerations for the benefit and risk of several vaccine platform technologies, including inactivated viral vaccines. This paper uses the BRAVATO inactivated virus vaccine template to review the features of an inactivated whole chikungunya virus (CHIKV) vaccine that has been evaluated in several preclinical studies and clinical trials. The inactivated whole CHIKV vaccine was cultured on Vero cells and inactivated by ß-propiolactone. This provides an effective, flexible system for high-yield manufacturing. The inactivated whole CHIKV vaccine has favorable thermostability profiles, compatible with vaccine supply chains. Safety data are compiled in the current inactivated whole CHIKV vaccine safety database with unblinded data from the ongoing studies: 850 participants from phase II study (parts A and B) outside of India, and 600 participants from ongoing phase II study in India, and completed phase I clinical studies for 60 subjects. Overall, the inactivated whole CHIKV vaccine has been well tolerated, with no significant safety issues identified. Evaluation of the inactivated whole CHIKV vaccine is continuing, with 1410 participants vaccinated as of 20 April 2022. Extensive evaluation of immunogenicity in humans shows strong, durable humoral immune responses.


Asunto(s)
COVID-19 , Fiebre Chikungunya , Virus Chikungunya , Vacunas Virales , Animales , Anticuerpos Antivirales , COVID-19/prevención & control , Fiebre Chikungunya/prevención & control , Chlorocebus aethiops , Humanos , Medición de Riesgo , Vacunas de Productos Inactivados , Células Vero
8.
Vaccine ; 40(35): 5275-5293, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35753841

RESUMEN

The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) Working Group has prepared standardized templates to describe the key considerations for the benefit-risk assessment of several vaccine platform technologies, including nucleic acid (RNA and DNA) vaccines. This paper uses the BRAVATO template to review the features of a vaccine employing a proprietary mRNA vaccine platform to develop Moderna COVID-19 Vaccine (mRNA-1273); a highly effective vaccine to prevent coronavirus disease 2019 (Covid-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In response to the pandemic the first in human studies began in March 2020 and the pivotal, placebo-controlled phase 3 efficacy study in over 30,000 adults began in July 2020. Based on demonstration of efficacy and safety at the time of interim analysis in November 2020 and at the time of trial unblinding in March 2021, the mRNA-1273 received Emergency Use Authorization in December 2020 and full FDA approval in January 2022.


Asunto(s)
COVID-19 , Vacunas Virales , Vacuna nCoV-2019 mRNA-1273 , Adulto , COVID-19/prevención & control , Humanos , Medición de Riesgo , SARS-CoV-2/genética , Vacunas Sintéticas , Vacunas de ARNm
9.
Vaccine ; 40(35): 5248-5262, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35715352

RESUMEN

Replication-deficient adenoviral vectors have been under investigation as a platform technology for vaccine development for several years and have recently been successfully deployed as an effective COVID-19 counter measure. A replication-deficient adenoviral vector based on the simian adenovirus type Y25 and named ChAdOx1 has been evaluated in several clinical trials since 2012. The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) was formed to evaluate the safety and other key features of new platform technology vaccines. This manuscript reviews key features of the ChAdOx1-vectored vaccines. The simian adenovirus Y25 was chosen as a strategy to circumvent pre-existing immunity to common human adenovirus serotypes which could impair immune responses induced by adenoviral vectored vaccines. Deletion of the E1 gene renders the ChAdOx1 vector replication incompetent and further genetic engineering of the E3 and E4 genes allows for increased insertional capability and optimizes vaccine manufacturing processes. ChAdOx1 vectored vaccines can be manufactured in E1 complementing cell lines at scale and are thermostable. The first ChAdOx1 vectored vaccines approved for human use, against SARS-CoV-2, received emergency use authorization in the UK on 30th December 2020, and is now approved in more than 180 countries. Safety data were compiled from phase I-III clinical trials of ChAdOx1 vectored vaccines expressing different antigens (influenza, tuberculosis, malaria, meningococcal B, prostate cancer, MERS-CoV, Chikungunya, Zika and SARS-CoV-2), conducted by the University of Oxford, as well as post marketing surveillance data for the COVID-19 Oxford-AstraZeneca vaccine. Overall, ChAdOx1 vectored vaccines have been well tolerated. Very rarely, thrombosis with thrombocytopenia syndrome (TTS), capillary leak syndrome (CLS), immune thrombocytopenia (ITP), and Guillain-Barre syndrome (GBS) have been reported following mass administration of the COVID-19 Oxford-AstraZeneca vaccine. The benefits of this COVID-19 vaccination have outweighed the risks of serious adverse events in most settings, especially with mitigation of risks when possible. Extensive immunogenicity clinical evaluation of ChAdOx1 vectored vaccines reveal strong, durable humoral and cellular immune responses to date; studies to refine the COVID-19 protection (e.g., via homologous/heterologous booster, fractional dose) are also underway. New prophylactic and therapeutic vaccines based on the ChAdOx1 vector are currently undergoing pre-clinical and clinical assessment, including vaccines against viral hemorrhagic fevers, Nipah virus, HIV, Hepatitis B, amongst others.


Asunto(s)
Adenovirus de los Simios , Vacunas contra la COVID-19 , COVID-19 , Infección por el Virus Zika , Virus Zika , Adenovirus de los Simios/genética , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Humanos , Masculino , Medición de Riesgo , SARS-CoV-2/genética
10.
J Infect Dis ; 202(4): 595-605, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20608874

RESUMEN

BACKGROUND: A candidate vaccine consisting of human immunodeficiency virus type 1 (HIV-1) subunit gp120 protein was found previously to be nonprotective in an efficacy trial (Vax004) despite strong antibody responses against the vaccine antigens. Here we assessed the magnitude and breadth of neutralizing antibody responses in Vax004. METHODS: Neutralizing antibodies were measured against highly sensitive (tier 1) and moderately sensitive (tier 2) strains of HIV-1 subtype B in 2 independent assays. Vaccine recipients were stratified by sex, race, and high versus low behavioral risk of HIV-1 acquisition. RESULTS: Most vaccine recipients mounted potent neutralizing antibody responses against HIV-1(MN) and other tier 1 viruses. Occasional weak neutralizing activity was detected against tier 2 viruses. The response against tier 1 and tier 2 viruses was significantly stronger in women than in men. Race and behavioral risk of HIV-1 acquisition had no significant effect on the response. Prior vaccination had little effect on the neutralizing antibody response that arose after infection. CONCLUSIONS: Weak overall neutralizing antibody responses against tier 2 viruses is consistent with a lack of protection in this trial. The magnitude and breadth of neutralization reported here should be useful for identifying improved vaccines.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Anti-VIH/sangre , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Femenino , Humanos , Masculino , Pruebas de Neutralización
11.
Vaccine ; 39(19): 2712-2718, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33846042

RESUMEN

Beginning in December of 2019, a novel coronavirus, SARS-CoV-2, emerged in China and is now a global pandemic with extensive morbidity and mortality. With the emergence of this threat, an unprecedented effort to develop vaccines against this virus began. As vaccines are now being introduced globally, we face the prospect of millions of people being vaccinated with multiple types of vaccines many of which use new vaccine platforms. Since medical events happen without vaccines, it will be important to know at what rate events occur in the background so that when adverse events are identified one has a frame of reference with which to compare the rates of these events so as to make an initial assessment as to whether there is a potential safety concern or not. Background rates vary over time, by geography, by sex, socioeconomic status and by age group. Here we describe two key steps for post-introduction safety evaluation of COVID-19 vaccines: Defining a dynamic list of Adverse Events of Special Interest (AESI) and establishing background rates for these AESI. We use multiple examples to illustrate use of rates and caveats for their use. In addition we discuss tools available from the Brighton Collaboration that facilitate case evaluation and understanding of AESI.


Asunto(s)
COVID-19 , Vacunas , Vacunas contra la COVID-19 , China/epidemiología , Humanos , SARS-CoV-2 , Vacunas/efectos adversos
12.
Vaccine ; 39(38): 5436-5441, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34373117

RESUMEN

Auro Vaccines LLC has developed a protein vaccine to prevent disease from Nipah and Hendra virus infection that employs a recombinant soluble Hendra glycoprotein (HeV-sG) adjuvanted with aluminum phosphate. This vaccine is currently under clinical evaluation in a Phase 1 study. The Benefit-Risk Assessment of VAccines by TechnolOgy Working Group (BRAVATO; ex-V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of protein vaccines. This will help key stakeholders to assess potential safety issues and understand the benefit-risk of such a vaccine platform. The structured and standardized assessment provided by the template may also help contribute to improved public acceptance and communication of licensed protein vaccines.


Asunto(s)
Virus Hendra , Infecciones por Henipavirus , Glicoproteínas , Infecciones por Henipavirus/prevención & control , Humanos , Medición de Riesgo , Vacunas Sintéticas
13.
Vaccine ; 39(22): 3081-3101, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33676782

RESUMEN

Replication-incompetent adenoviral vectors have been under investigation as a platform to carry a variety of transgenes, and express them as a basis for vaccine development. A replication-incompetent adenoviral vector based on human adenovirus type 26 (Ad26) has been evaluated in several clinical trials. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and features of recombinant viral vector vaccines. This paper reviews features of the Ad26 vectors, including tabulation of safety and risk assessment characteristics of Ad26-based vaccines. In the Ad26 vector, deletion of E1 gene rendering the vector replication incompetent is combined with additional genetic engineering for vaccine manufacturability and transgene expression optimization. These vaccines can be manufactured in mammalian cell lines at scale providing an effective, flexible system for high-yield manufacturing. Ad26 vector vaccines have favorable thermostability profiles, compatible with vaccine supply chains. Safety data are compiled in the Ad26 vaccine safety database version 4.0, with unblinded data from 23 ongoing and completed clinical studies for 3912 participants in five different Ad26-based vaccine programs. Overall, Ad26-based vaccines have been well tolerated, with no significant safety issues identified. Evaluation of Ad26-based vaccines is continuing, with >114,000 participants vaccinated as of 4th September 2020. Extensive evaluation of immunogenicity in humans shows strong, durable humoral and cellular immune responses. Clinical trials have not revealed impact of pre-existing immunity to Ad26 on vaccine immunogenicity, even in the presence of Ad26 neutralizing antibody titers or Ad26-targeting T cell responses at baseline. The first Ad26-based vaccine, against Ebola virus, received marketing authorization from EC on 1st July 2020, as part of the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen. New developments based on Ad26 vectors are underway, including a COVID-19 vaccine, which is currently in phase 3 of clinical evaluation.


Asunto(s)
COVID-19 , Ebolavirus , Vacunas Virales , Animales , Vacunas contra la COVID-19 , Vectores Genéticos , Humanos , Medición de Riesgo , SARS-CoV-2 , Vacunas Virales/genética
14.
Vaccine ; 39(22): 3053-3066, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33637387

RESUMEN

This is a Brighton Collaboration Case Definition of the term "Vaccine Associated Enhanced Disease" to be utilized in the evaluation of adverse events following immunization. The Case Definition was developed by a group of experts convened by the Coalition for Epidemic Preparedness Innovations (CEPI) in the context of active development of vaccines for SARS-CoV-2 vaccines and other emerging pathogens. The case definition format of the Brighton Collaboration was followed to develop a consensus definition and defined levels of certainty, after an exhaustive review of the literature and expert consultation. The document underwent peer review by the Brighton Collaboration Network and by selected Expert Reviewers prior to submission.


Asunto(s)
COVID-19 , Vacunas , Vacunas contra la COVID-19 , Recolección de Datos , Humanos , Inmunización/efectos adversos , SARS-CoV-2 , Vacunas/efectos adversos
15.
J Clin Invest ; 131(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33529172

RESUMEN

BACKGROUNDTo understand the features of a replicating vaccine that might drive potent and durable immune responses to transgene-encoded antigens, we tested a replication-competent adenovirus type 4 encoding influenza virus H5 HA (Ad4-H5-Vtn) administered as an oral capsule or via tonsillar swab or nasal spray.METHODSViral shedding from the nose, mouth, and rectum was measured by PCR and culturing. H5-specific IgG and IgA antibodies were measured by bead array binding assays. Serum antibodies were measured by a pseudovirus entry inhibition, microneutralization, and HA inhibition assays.RESULTSAd4-H5-Vtn DNA was shed from most upper respiratory tract-immunized (URT-immunized) volunteers for 2 to 4 weeks, but cultured from only 60% of participants, with a median duration of 1 day. Ad4-H5-Vtn vaccination induced increases in H5-specific CD4+ and CD8+ T cells in the peripheral blood as well as increases in IgG and IgA in nasal, cervical, and rectal secretions. URT immunizations induced high levels of serum neutralizing antibodies (NAbs) against H5 that remained stable out to week 26. The duration of viral shedding correlated with the magnitude of the NAb response at week 26. Adverse events (AEs) were mild, and peak NAb titers were associated with overall AE frequency and duration. Serum NAb titers could be boosted to very high levels 2 to 5 years after Ad4-H5-Vtn vaccination with recombinant H5 or inactivated split H5N1 vaccine.CONCLUSIONReplicating Ad4 delivered to the URT caused prolonged exposure to antigen, drove durable systemic and mucosal immunity, and proved to be a promising platform for the induction of immunity against viral surface glycoprotein targets.TRIAL REGISTRATIONClinicalTrials.gov NCT01443936 and NCT01806909.FUNDINGIntramural and Extramural Research Programs of the NIAID, NIH (U19 AI109946) and the Centers of Excellence for Influenza Research and Surveillance (CEIRS), NIAID, NIH (contract HHSN272201400008C).


Asunto(s)
Adenovirus Humanos/genética , Vectores Genéticos , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Adenovirus Humanos/inmunología , Adenovirus Humanos/fisiología , Administración Oral , Adolescente , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Antígenos Virales/genética , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunidad Mucosa , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/genética , Gripe Humana/inmunología , Gripe Humana/prevención & control , Masculino , Rociadores Nasales , Tonsila Palatina , Replicación Viral , Esparcimiento de Virus , Adulto Joven
16.
Vaccine ; 38(49): 7708-7715, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-32907759

RESUMEN

Many of the vaccines under development for COVID-19 involve the use of viral vectors. The Brighton Collaboration Benefit-Risk Assessment of Vaccines by Technology (BRAVATO, formerly the Viral Vector Vaccine Safety Working Group, V3SWG) working group has prepared a standardized template to describe the key considerations for the benefit-risk assessment of viral vector vaccines. This will facilitate key stakeholders to anticipate potential safety issues and interpret or assess safety data. This would also help improve communication and public acceptance of licensed viral vector vaccines.


Asunto(s)
Evaluación Preclínica de Medicamentos/normas , Vacunas Atenuadas/efectos adversos , Vacunas Virales/efectos adversos , Animales , Vectores Genéticos , Humanos , Internet , Medición de Riesgo
17.
Vaccine ; 38(34): 5556-5561, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32571717

RESUMEN

Nucleic acid (DNA and RNA) vaccines are among the most advanced vaccines for COVID-19 under development. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of nucleic acid vaccines. This will facilitate the assessment by key stakeholders of potential safety issues and understanding of overall benefit-risk. The structured assessment provided by the template can also help improve communication and public acceptance of licensed nucleic acid vaccines.


Asunto(s)
Medición de Riesgo/métodos , Vacunas de ADN/efectos adversos , Vacunas de ADN/normas , Vacunas Virales/genética , Vacunas Virales/normas , Vacunas contra la COVID-19 , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/prevención & control , Humanos , Opinión Pública , Medición de Riesgo/normas , Vacunas de ADN/genética , Vacunas Virales/efectos adversos
18.
Vaccine ; 38(35): 5734-5739, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32653276

RESUMEN

Several protein vaccine candidates are among the COVID-19 vaccines in development. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of protein vaccines. This will help key stakeholders to assess potential safety issues and understand the benefit-risk of such a vaccine platform. The structured and standardized assessment provided by the template would also help contribute to improved public acceptance and communication of licensed protein vaccines.


Asunto(s)
Vacunas Virales/efectos adversos , Vacunas Virales/inmunología , Antígenos Virales/administración & dosificación , Antígenos Virales/efectos adversos , Antígenos Virales/inmunología , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Humanos , Seguridad del Paciente , Medición de Riesgo , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología , Proteínas Virales/administración & dosificación , Proteínas Virales/efectos adversos , Proteínas Virales/inmunología , Vacunas Virales/administración & dosificación
19.
Vaccine ; 38(39): 6184-6189, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32747214

RESUMEN

Inactivated viral vaccines have long been used in humans for diseases of global health threat and are now among the vaccines for COVID-19 under development. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of inactivated viral vaccines. This will help key stakeholders to assess potential safety issues and understand the benefit-risk of the vaccine platform. The standardized and structured assessment provided by the template would also help to contribute to improved communication and support public acceptance of licensed inactivated viral vaccines.


Asunto(s)
Infecciones por Coronavirus/prevención & control , Aprobación de Drogas/legislación & jurisprudencia , Pandemias/prevención & control , Neumonía Viral/prevención & control , Medición de Riesgo , Vacunas Virales/normas , Betacoronavirus/efectos de los fármacos , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Vacunas contra la COVID-19 , Defensa Civil , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Regulación Gubernamental , Humanos , Inmunogenicidad Vacunal , Cooperación Internacional , Seguridad del Paciente , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2 , Vacunas de Productos Inactivados , Vacunas Virales/administración & dosificación , Vacunas Virales/biosíntesis
20.
Vaccine ; 38(49): 7702-7707, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33070999

RESUMEN

Several live-attenuated viral vaccine candidates are among the COVID-19 vaccines in development. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of live-attenuated viral vaccines. This will help key stakeholders assess potential safety issues and understand the benefit-risk of such vaccines. The standardized and structured assessment provided by the template would also help to contribute to improved communication and support public acceptance of licensed live-attenuated viral vaccines.


Asunto(s)
Evaluación Preclínica de Medicamentos/normas , Vacunas Atenuadas/efectos adversos , Vacunas Virales/efectos adversos , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/farmacología , Evaluación Preclínica de Medicamentos/métodos , Humanos , Medición de Riesgo , Sociedades Científicas , Vacunas Atenuadas/farmacología , Vacunas Virales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA