Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Emerg Infect Dis ; 28(13): S26-S33, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36502434

RESUMEN

A network of global respiratory disease surveillance systems and partnerships has been built over decades as a direct response to the persistent threat of seasonal, zoonotic, and pandemic influenza. These efforts have been spearheaded by the World Health Organization, country ministries of health, the US Centers for Disease Control and Prevention, nongovernmental organizations, academic groups, and others. During the COVID-19 pandemic, the US Centers for Disease Control and Prevention worked closely with ministries of health in partner countries and the World Health Organization to leverage influenza surveillance systems and programs to respond to SARS-CoV-2 transmission. Countries used existing surveillance systems for severe acute respiratory infection and influenza-like illness, respiratory virus laboratory resources, pandemic influenza preparedness plans, and ongoing population-based influenza studies to track, study, and respond to SARS-CoV-2 infections. The incorporation of COVID-19 surveillance into existing influenza sentinel surveillance systems can support continued global surveillance for respiratory viruses with pandemic potential.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Pandemias/prevención & control , COVID-19/epidemiología , Gripe Humana/epidemiología , Gripe Humana/prevención & control , SARS-CoV-2 , Organización Mundial de la Salud
2.
Influenza Other Respir Viruses ; 17(1): e13073, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36824313

RESUMEN

Background: External quality assessments (EQAs) for the molecular detection of human respiratory syncytial virus (RSV) are necessary to ensure the standardisation of reliable results. The Phase II, 2019-2020 World Health Organization (WHO) RSV EQA included 28 laboratories in 26 countries. The EQA panel evaluated performance in the molecular detection and subtyping of RSV-A and RSV-B. This manuscript describes the preparation, distribution, and analysis of the 2019-2020 WHO RSV EQA. Methods: Panel isolates underwent whole genome sequencing and in silico primer matching. The final panel included nine contemporary, one historical virus and two negative controls. The EQA panel was manufactured and distributed by the UK National External Quality Assessment Service (UK NEQAS). National laboratories used WHO reference assays developed by the United States Centers for Disease Control and Prevention, an RSV subtyping assay developed by the Victorian Infectious Diseases Reference Laboratory (Australia), or other in-house or commercial assays already in use at their laboratories. Results: An in silico analysis of isolates showed a good match to assay primer/probes. The panel was distributed to 28 laboratories. Isolates were correctly identified in 98% of samples for detection and 99.6% for subtyping. Conclusions: The WHO RSV EQA 2019-2020 showed that laboratories performed at high standards. Updating the composition of RSV molecular EQAs with contemporary strains to ensure representation of circulating strains, and ensuring primer matching with EQA panel viruses, is advantageous in assessing diagnostic competencies of laboratories. Ongoing EQAs are recommended because of continued evolution of mismatches between current circulating strains and existing primer sets.


Asunto(s)
Virus Sincitial Respiratorio Humano , Virus , Estados Unidos , Humanos , Virus Sincitial Respiratorio Humano/genética , Laboratorios , Organización Mundial de la Salud , Australia
3.
J Clin Microbiol ; 49(7): 2614-9, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21593260

RESUMEN

Swine influenza viruses (SIV) have been shown to sporadically infect humans and are infrequently identified by the Influenza Division of the Centers for Disease Control and Prevention (CDC) after being received as unsubtypeable influenza A virus samples. Real-time reverse transcriptase PCR (rRT-PCR) procedures for detection and characterization of North American lineage (N. Am) SIV were developed and implemented at CDC for rapid identification of specimens from cases of suspected infections with SIV. These procedures were utilized in April 2009 for detection of human cases of 2009 A (H1N1) pandemic (pdm) influenza virus infection. Based on genetic sequence data derived from the first two viruses investigated, the previously developed rRT-PCR procedures were optimized to create the CDC rRT-PCR Swine Flu Panel for detection of the 2009 A (H1N1) pdm influenza virus. The analytical sensitivity of the CDC rRT-PCR Swine Flu Panel was shown to be 5 copies of RNA per reaction and 10(-1.3 - -0.7) 50% infectious doses (ID(50)) per reaction for cultured viruses. Cross-reactivity was not observed when testing human clinical specimens or cultured viruses that were positive for human seasonal A (H1N1, H3N2) and B influenza viruses. The CDC rRT-PCR Swine Flu Panel was distributed to public health laboratories in the United States and internationally from April 2009 until June 2010. The CDC rRT-PCR Swine Flu Panel served as an effective tool for timely and specific detection of 2009 A (H1N1) pdm influenza viruses and facilitated subsequent public health response implementation.


Asunto(s)
Técnicas de Laboratorio Clínico/métodos , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/diagnóstico , Gripe Humana/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Virología/métodos , Centers for Disease Control and Prevention, U.S. , Reacciones Cruzadas , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Sensibilidad y Especificidad , Estados Unidos
4.
Afr J Lab Med ; 8(1): 861, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31392168

RESUMEN

BACKGROUND: Endemic and emerging respiratory viruses are a threat to public health, and a robust public health laboratory system is essential to ensure global health security. OBJECTIVE: This program sought to expand molecular laboratory testing capacity to detect a broad range of respiratory pathogens in clinical respiratory specimens collected during disease surveillance and outbreak investigations. METHODS: As a part of the Global Health Security Agenda (GHSA), the United States Centers for Disease Control and Prevention utilised the equipment and training infrastructure already in place at the World Health Organization National Influenza Centers to expand testing capacity for respiratory viruses in laboratories in GHSA partner countries. This was done through the provision of quality assured reagents, including multiplex platforms and technical guidance for laboratory staff, as well as the assessment of laboratory testing accuracy. CONCLUSION: Early findings illustrated that GHSA laboratories have been able to expand testing capacity using specimens from routine surveillance, as well as from outbreak situations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA