Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396898

RESUMEN

The identification of surfaceome proteins is a main goal in cancer research to design antibody-based therapeutic strategies. T cell engagers based on KLK2, a kallikrein specifically expressed in prostate cancer (PRAD), are currently in early clinical development. Using genomic information from different sources, we evaluated the immune microenvironment and genomic profile of prostate tumors with high expression of KLK2. KLK2 was specifically expressed in PRAD but it was not significant associated with Gleason score. Additionally, KLK2 expression did not associate with the presence of any immune cell population and T cell activating markers. A mild correlation between the high expression of KLK2 and the deletion of TMPRSS2 was identified. KLK2 expression associated with high levels of surface proteins linked with a detrimental response to immune checkpoint inhibitors (ICIs) including CHRNA2, FAM174B, OR51E2, TSPAN1, PTPRN2, and the non-surface protein TRPM4. However, no association of these genes with an outcome in PRAD was observed. Finally, the expression of these genes in PRAD did not associate with an outcome in PRAD and any immune populations. We describe the immunologic microenvironment on PRAD tumors with a high expression of KLK2, including a gene signature linked with an inert immune microenvironment, that predicts the response to ICIs in other tumor types. Strategies targeting KLK2 with T cell engagers or antibody-drug conjugates will define whether T cell mobilization or antigen release and stimulation of immune cell death are sufficient effects to induce clinical activity.


Asunto(s)
Calicreínas , Neoplasias de la Próstata , Receptores Odorantes , Humanos , Masculino , Genómica , Calicreínas/genética , Calicreínas/inmunología , Calicreínas/metabolismo , Proteínas de Neoplasias , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/metabolismo , Tetraspaninas , Microambiente Tumoral/genética
2.
Int J Cancer ; 152(2): 283-297, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36093604

RESUMEN

Matrix metalloproteinase-11 (MMP11) is an enzyme with proteolytic activity against matrix and nonmatrix proteins. Although most MMPs are secreted as inactive proenzymes and are later activated extracellularly, MMP11 is activated intracellularly by furin within the constitutive secretory pathway. It is a key factor in physiological tissue remodeling and its alteration may play an important role in the progression of epithelial malignancies and other diseases. TCGA colon and colorectal adenocarcinoma data showed that upregulation of MMP11 expression correlates with tumorigenesis and malignancy. Here, we provide evidence that a germline variant in the MMP11 gene (NM_005940: c.232C>T; p.(Pro78Ser)), identified by whole exome sequencing, can increase the tumorigenic properties of colorectal cancer (CRC) cells. P78S is located in the prodomain region, which is responsible for blocking MMP11's protease activity. This variant was detected in the proband and all the cancer-affected family members analyzed, while it was not detected in healthy relatives. In silico analyses predict that P78S could have an impact on the activation of the enzyme. Furthermore, our in vitro analyses show that the expression of P78S in HCT116 cells increases tumor cell invasion and proliferation. In summary, our results show that this variant could modify the structure of the MMP11 prodomain, producing a premature or uncontrolled activation of the enzyme that may contribute to an early CRC onset in these patients. The study of this gene in other CRC cases will provide further information about its role in CRC development, which might improve patient treatment in the future.


Asunto(s)
Neoplasias Colorrectales , Mutación con Ganancia de Función , Humanos , Metaloproteinasa 11 de la Matriz/genética , Metaloproteinasa 11 de la Matriz/metabolismo , Neoplasias Colorrectales/patología , Carcinogénesis , Células Germinativas/metabolismo
3.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138981

RESUMEN

Liver cancer represents a major health problem worldwide with growing incidence and high mortality, hepatocellular carcinoma (HCC) being the most frequent. Hepatocytes are likely the cellular origin of most HCCs through the accumulation of genetic alterations, although hepatic progenitor cells (HPCs) might also be candidates in specific cases, as discussed here. HCC usually develops in a context of chronic inflammation, fibrosis, and cirrhosis, although the role of fibrosis is controversial. The interplay between hepatocytes, immune cells and hepatic stellate cells is a key issue. This review summarizes critical aspects of the liver tumor microenvironment paying special attention to platelets as new key players, which exert both pro- and anti-tumor effects, determined by specific contexts and a tight regulation of platelet signaling. Additionally, the relevance of specific signaling pathways, mainly HGF/MET, EGFR and TGF-ß is discussed. HGF and TGF-ß are produced by different liver cells and platelets and regulate not only tumor cell fate but also HPCs, inflammation and fibrosis, these being key players in these processes. The role of C3G/RAPGEF1, required for the proper function of HGF/MET signaling in HCC and HPCs, is highlighted, due to its ability to promote HCC growth and, regulate HPC fate and platelet-mediated actions on liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Cirrosis Hepática/metabolismo , Fibrosis , Factor de Crecimiento Transformador beta/metabolismo , Inflamación/metabolismo , Microambiente Tumoral
4.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576182

RESUMEN

C3G (RAPGEF1) is a guanine nucleotide exchange factor (GEF) for GTPases from the Ras superfamily, mainly Rap1, although it also acts through GEF-independent mechanisms. C3G regulates several cellular functions. It is expressed at relatively high levels in specific brain areas, playing important roles during embryonic development. Recent studies have uncovered different roles for C3G in cancer that are likely to depend on cell context, tumour type, and stage. However, its role in brain tumours remained unknown until very recently. We found that C3G expression is downregulated in GBM, which promotes the acquisition of a more mesenchymal phenotype, enhancing migration and invasion, but not proliferation. ERKs hyperactivation, likely induced by FGFR1, is responsible for this pro-invasive effect detected in C3G silenced cells. Other RTKs (Receptor Tyrosine Kinases) are also dysregulated and could also contribute to C3G effects. However, it remains undetermined whether Rap1 is a mediator of C3G actions in GBM. Various Rap1 isoforms can promote proliferation and invasion in GBM cells, while C3G inhibits migration/invasion. Therefore, other RapGEFs could play a major role regulating Rap1 activity in these tumours. Based on the information available, C3G could represent a new biomarker for GBM diagnosis, prognosis, and personalised treatment of patients in combination with other GBM molecular markers. The quantification of C3G levels in circulating tumour cells (CTCs) in the cerebrospinal liquid and/or circulating fluids might be a useful tool to improve GBM patient treatment and survival.


Asunto(s)
Glioblastoma/metabolismo , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Animales , Glioblastoma/genética , Factor 2 Liberador de Guanina Nucleótido/genética , Humanos , Células Neoplásicas Circulantes/metabolismo , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismo
5.
Hum Mol Genet ; 27(18): 3233-3245, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29905864

RESUMEN

Central conducting lymphatic anomaly (CCLA) is one of the complex lymphatic anomalies characterized by dilated lymphatic channels, lymphatic channel dysmotility and distal obstruction affecting lymphatic drainage. We performed whole exome sequencing (WES) of DNA from a four-generation pedigree and examined the consequences of the variant by transfection of mammalian cells and morpholino and rescue studies in zebrafish. WES revealed a heterozygous mutation in EPHB4 (RefSeq NM_004444.4; c.2334 + 1G>C) and RNA-Seq demonstrated that the EPHB4 mutation destroys the normal donor site, which leads to the use of a cryptic splice donor that results in retention of the intervening 12-bp intron sequence. Transient co-expression of the wild-type and mutant EPHB4 proteins showed reduced phosphorylation of tyrosine, consistent with a loss-of-function effect. Zebrafish ephb4a morpholino resulted in vessel misbranching and deformities in the lymphatic vessel development, indicative of possible differentiation defects in lymphatic vessels, mimicking the lymphatic presentations of the patients. Immunoblot analysis using zebrafish lysates demonstrated over-activation of mTORC1 as a consequence of reduced EPHB4 signaling. Strikingly, drugs that inhibit mTOR signaling or RAS-MAPK signaling effectively rescued the misbranching phenotype in a comparable manner. Moreover, knock-in of EPHB4 mutation in HEK293T cells also induced mTORC1 activity. Our data demonstrate the pathogenicity of the identified EPHB4 mutation as a novel cause of CCLA and suggesting that ERK inhibitors may have therapeutic benefits in such patients with complex lymphatic anomalies.


Asunto(s)
Secuenciación del Exoma , Anomalías Linfáticas/genética , Vasos Linfáticos/metabolismo , Receptor EphB4/genética , Animales , Modelos Animales de Enfermedad , Células HEK293 , Heterocigoto , Humanos , Anomalías Linfáticas/metabolismo , Anomalías Linfáticas/patología , Vasos Linfáticos/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Linaje , Fosforilación , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal , Pez Cebra/genética
6.
J Biol Chem ; 290(7): 4383-97, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25548290

RESUMEN

p38 MAPKs regulate migration and invasion. However, the mechanisms involved are only partially known. We had previously identified fibulin 3, which plays a role in migration, invasion, and tumorigenesis, as a gene regulated by p38α. We have characterized in detail how p38 MAPK regulates fibulin 3 expression and its role. We describe here for the first time that p38α, p38γ, and p38δ down-regulate fibulin 3 expression. p38α has a stronger effect, and it does so through hypermethylation of CpG sites in the regulatory sequences of the gene. This would be mediated by the DNA methylase, DNMT3A, which is down-regulated in cells lacking p38α, but once re-introduced represses Fibulin 3 expression. p38α through HuR stabilizes dnmt3a mRNA leading to an increase in DNMT3A protein levels. Moreover, by knocking-down fibulin 3, we have found that Fibulin 3 inhibits migration and invasion in MEFs by mechanisms involving p38α/ß inhibition. Hence, p38α pro-migratory/invasive effect might be, at least in part, mediated by fibulin 3 down-regulation in MEFs. In contrast, in HCT116 cells, Fibulin 3 promotes migration and invasion through a mechanism dependent on p38α and/or p38ß activation. Furthermore, Fibulin 3 promotes in vitro and in vivo tumor growth of HCT116 cells through a mechanism dependent on p38α, which surprisingly acts as a potent inducer of tumor growth. At the same time, p38α limits fibulin 3 expression, which might represent a negative feed-back loop.


Asunto(s)
Movimiento Celular , Neoplasias del Colon/patología , Metilación de ADN , Embrión de Mamíferos/metabolismo , Proteínas de la Matriz Extracelular/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Proteína Quinasa 14 Activada por Mitógenos/fisiología , Animales , Western Blotting , Adhesión Celular , Proliferación Celular , Células Cultivadas , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Regulación hacia Abajo , Embrión de Mamíferos/citología , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/citología , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Desnudos , Invasividad Neoplásica , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Elementos de Respuesta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cicatrización de Heridas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Biol Chem ; 289(28): 19823-38, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-24825907

RESUMEN

Overexpression of PKCϵ, a kinase associated with tumor aggressiveness and widely implicated in malignant transformation and metastasis, is a hallmark of multiple cancers, including mammary, prostate, and lung cancer. To characterize the mechanisms that control PKCϵ expression and its up-regulation in cancer, we cloned an ∼ 1.6-kb promoter segment of the human PKCϵ gene (PRKCE) that displays elevated transcriptional activity in cancer cells. A comprehensive deletional analysis established two regions rich in Sp1 and STAT1 sites located between -777 and -105 bp (region A) and -921 and -796 bp (region B), respectively, as responsible for the high transcriptional activity observed in cancer cells. A more detailed mutagenesis analysis followed by EMSA and ChIP identified Sp1 sites in positions -668/-659 and -269/-247 as well as STAT1 sites in positions -880/-869 and -793/-782 as the elements responsible for elevated promoter activity in breast cancer cells relative to normal mammary epithelial cells. RNAi silencing of Sp1 and STAT1 in breast cancer cells reduced PKCϵ mRNA and protein expression, as well as PRKCE promoter activity. Moreover, a strong correlation was found between PKCϵ and phospho-Ser-727 (active) STAT1 levels in breast cancer cells. Our results may have significant implications for the development of approaches to target PKCϵ and its effectors in cancer therapeutics.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Proteína Quinasa C-epsilon/biosíntesis , Elementos de Respuesta , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción Sp1/metabolismo , Transcripción Genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Proteínas de Neoplasias/genética , Proteína Quinasa C-epsilon/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción Sp1/genética
8.
Biochim Biophys Acta ; 1832(12): 2204-15, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23994610

RESUMEN

Hepatocyte growth factor (HGF) and its receptor, Met, are key determinants of distinct developmental processes. Although HGF exerts cardio-protective effects in a number of cardiac pathologies, it remains unknown whether HGF/Met signaling is essential for myocardial development and/or physiological function in adulthood. We therefore investigated the requirement of HGF/Met signaling in cardiomyocyte for embryonic and postnatal heart development and function by conditional inactivation of the Met receptor in cardiomyocytes using the Cre-α-MHC mouse line (referred to as α-MHCMet-KO). Although α-MHCMet-KO mice showed normal heart development and were viable and fertile, by 6 months of age, males developed cardiomyocyte hypertrophy, associated with interstitial fibrosis. A significant upregulation in markers of myocardial damage, such as ß-MHC and ANF, was also observed. By the age of 9 months, α-MHCMet-KO males displayed systolic cardiac dysfunction. Mechanistically, we provide evidence of a severe imbalance in the antioxidant defenses in α-MHCMet-KO hearts involving a reduced expression and activity of catalase and superoxide dismutase, with consequent reactive oxygen species accumulation. Similar anomalies were observed in females, although with a slower kinetics. We also found that Met signaling down-regulation leads to an increase in TGF-ß production and a decrease in p38MAPK activation, which may contribute to phenotypic alterations displayed in α-MHCMet-KO mice. Consistently, we show that HGF acts through p38α to upregulate antioxidant enzymes in cardiomyocytes. Our results highlight that HGF/Met signaling in cardiomyocytes plays a physiological cardio-protective role in adult mice by acting as an endogenous regulator of heart function through oxidative stress control.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Corazón/fisiopatología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Western Blotting , Catalasa/genética , Catalasa/metabolismo , Proliferación Celular , Células Cultivadas , Citocromos c/genética , Citocromos c/metabolismo , Electrocardiografía , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Técnicas para Inmunoenzimas , Integrasas , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Miocitos Cardíacos/patología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Mol Biol Rep ; 41(4): 2067-76, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24430297

RESUMEN

Chimaerins are a family of diacylglycerol- and phorbol ester-regulated GTPase activating proteins (GAPs) for the small G-protein Rac. Extensive evidence indicates that these proteins play important roles in development, axon guidance, metabolism, cell motility, and T cell activation. Four isoforms have been reported to-date, which are products of CHN1 (α1- and α2-chimaerins) and CHN2 (ß1- and ß2-chimaerins) genes. Although these gene products are assumed to be generated by alternative splicing, bioinformatics analysis of the CHN2 gene revealed that ß1- and ß2-chimaerins are the products of alternative transcription start sites (TSSs) in different promoter regions. Furthermore, we found an additional TSS in CHN2 gene that leads to a novel product, which we named ß3-chimaerin. Expression profile analysis revealed predominantly low levels for the ß3-chimaerin transcript, with higher expression levels in epididymis, plasma blood leucocytes, spleen, thymus, as well as various areas of the brain. In addition to the prototypical SH2, C1, and Rac-GAP domains, ß3-chimaerin has a unique N-terminal domain. Studies in cells established that ß3-chimaerin has Rac-GAP activity and is responsive to phorbol esters. The enhanced responsiveness of ß3-chimaerin for phorbol ester-induced translocation relative to ß2-chimaerin suggests differential ligand accessibility to the C1 domain.


Asunto(s)
Proteínas Quimerinas/genética , Proteínas Quimerinas/metabolismo , Isoformas de Proteínas , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Línea Celular , Proteínas Quimerinas/química , Chlorocebus aethiops , Activación Enzimática , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Orden Génico , Humanos , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Acetato de Tetradecanoilforbol/farmacología , Proteínas de Unión al GTP rac/metabolismo
10.
Int J Biol Sci ; 20(7): 2339-2355, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725853

RESUMEN

Chronic cholestatic damage is associated to both accumulation of cytotoxic levels of bile acids and expansion of adult hepatic progenitor cells (HPC) as part of the ductular reaction contributing to the regenerative response. Here, we report a bile acid-specific cytotoxic response in mouse HPC, which is partially impaired by EGF signaling. Additionally, we show that EGF synergizes with bile acids to trigger inflammatory signaling and NLRP3 inflammasome activation in HPC. Aiming at understanding the impact of this HPC specific response on the liver microenvironment we run a proteomic analysis of HPC secretome. Data show an enrichment in immune and TGF-ß regulators, ECM components and remodeling proteins in HPC secretome. Consistently, HPC-derived conditioned medium promotes hepatic stellate cell (HSC) activation and macrophage M1-like polarization. Strikingly, EGF and bile acids co-treatment leads to profound changes in the secretome composition, illustrated by an abolishment of HSC activating effect and by promoting macrophage M2-like polarization. Collectively, we provide new specific mechanisms behind HPC regulatory action during cholestatic liver injury, with an active role in cellular interactome and inflammatory response regulation. Moreover, findings prove a key contribution for EGFR signaling jointly with bile acids in HPC-mediated actions.


Asunto(s)
Ácidos y Sales Biliares , Receptores ErbB , Inflamación , Hígado , Transducción de Señal , Animales , Masculino , Ratones , Ácidos y Sales Biliares/metabolismo , Receptores ErbB/metabolismo , Células Estrelladas Hepáticas/metabolismo , Inflamación/metabolismo , Hígado/metabolismo , Hígado/patología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Proteómica , Células Madre/metabolismo
11.
Cancer Lett ; 588: 216776, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38432581

RESUMEN

Due to the limited effectiveness of current treatments, the survival rate of patients with metastatic castration-resistant prostate cancer (mCRPC) is significantly reduced. Consequently, it is imperative to identify novel therapeutic targets for managing these patients. Since the invasive ability of cells is crucial for establishing and maintaining metastasis, the aim of this study was to identify the essential regulators of invasive abilities of mCRPC cells by conducting two independent high-throughput CRISPR/Cas9 screenings. Furthermore, some of the top hits were validated using siRNA technology, with protein arginine methyltransferase 7 (PRMT7) emerging as the most promising candidate. We demonstrated that its inhibition or depletion via genetic or pharmacological approaches significantly reduces invasive, migratory and proliferative abilities of mCRPC cells in vitro. Moreover, we confirmed that PRMT7 ablation reduces cell dissemination in chicken chorioallantoic membrane and mouse xenograft assays. Molecularly, PRMT7 reprograms the expression of several adhesion molecules by methylating various transcription factors, such as FoxK1, resulting in the loss of adhesion from the primary tumor and increased motility of mCRPC cells. Furthermore, PRMT7 higher expression correlates with tumor aggressivity and poor overall survival in prostate cancer patients. Thus, this study demonstrates that PRMT7 is a potential therapeutic target and potential biomarker for mPCa.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Proteína-Arginina N-Metiltransferasas , Masculino , Animales , Ratones , Humanos , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Sistemas CRISPR-Cas , Genes Esenciales , Detección Precoz del Cáncer
12.
J Biol Chem ; 287(4): 2632-42, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22139847

RESUMEN

We reveal a novel pro-survival role for mammalian p38α in response to H(2)O(2), which involves an up-regulation of antioxidant defenses. The presence of p38α increases basal and H(2)O(2)-induced expression of the antioxidant enzymes: superoxide-dismutase 1 (SOD-1), SOD-2, and catalase through different mechanisms, which protects from reactive oxygen species (ROS) accumulation and prevents cell death. p38α was found to regulate (i) H(2)O(2)-induced SOD-2 expression through a direct regulation of transcription mediated by activating transcription factor 2 (ATF-2) and (ii) H(2)O(2)-induced catalase expression through regulation of protein stability and mRNA expression and/or stabilization. As a consequence, SOD and catalase activities are higher in WT MEFs. We also found that this p38α-dependent antioxidant response allows WT cells to maintain an efficient activation of the mTOR/p70S6K pathway. Accordingly, the loss of p38α leads to ROS accumulation in response to H(2)O(2), which causes cell death and inactivation of mTOR/p70S6K signaling. This can be rescued by either p38α re-expression or treatment with the antioxidants, N-acetyl cysteine, or exogenously added catalase. Therefore, our results reveal a novel homeostatic role for p38α in response to oxidative stress, where ROS removal is favored by antioxidant enzymes up-regulation, allowing cell survival and mTOR/p70S6K activation.


Asunto(s)
Catalasa/biosíntesis , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Estrés Oxidativo/fisiología , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/fisiología , Superóxido Dismutasa/biosíntesis , Acetilcisteína/farmacología , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Animales , Catalasa/genética , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Depuradores de Radicales Libres/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Peróxido de Hidrógeno/farmacología , Ratones , Ratones Noqueados , Proteína Quinasa 14 Activada por Mitógenos/genética , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
13.
Int J Biol Sci ; 18(15): 5873-5884, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263169

RESUMEN

Previous data indicate that C3G (RapGEF1) main isoform is highly expressed in liver progenitor cells (or oval cells) compared to adult mature hepatocytes, suggesting it may play an important role in oval cell biology. Hence, we have explored C3G function in the regulation of oval cell properties by permanent gene silencing using shRNAs. We found that C3G knock-down enhanced migratory and invasive ability of oval cells by promoting a partial epithelial to mesenchymal transition (EMT). This is likely mediated by upregulation of mRNA expression of the EMT-inducing transcription factors, Snail1, Zeb1 and Zeb2, induced in C3G-silenced oval cells. This EMT is associated to a higher expression of the stemness markers, CD133 and CD44. Moreover, C3G down-regulation increased oval cells clonogenic capacity by enhancing cell scattering. However, C3G knock-down did not impair oval cell differentiation into hepatocyte lineage. Mechanistic studies revealed that HGF/MET signaling and its pro-invasive activity was impaired in oval cells with low levels of C3G, while TGF-ß signaling was increased. Altogether, these data suggest that C3G might be tightly regulated to ensure liver repair in chronic liver diseases such as non-alcoholic steatohepatitis. Hence, reduced C3G levels could facilitate oval cell expansion, after the proliferation peak, by enhancing migration.


Asunto(s)
Transición Epitelial-Mesenquimal , Células Madre , Transición Epitelial-Mesenquimal/genética , Regulación hacia Abajo/genética , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , ARN Mensajero/metabolismo
14.
Sci Rep ; 12(1): 7075, 2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-35490180

RESUMEN

Range verification of clinical protontherapy systems via positron-emission tomography (PET) is not a mature technology, suffering from two major issues: insufficient signal from low-energy protons in the Bragg peak area and biological washout of PET emitters. The use of contrast agents including 18O, 68Zn or 63Cu, isotopes with a high cross section for low-energy protons in nuclear reactions producing PET emitters, has been proposed to enhance the PET signal in the last millimeters of the proton path. However, it remains a challenge to achieve sufficient concentrations of these isotopes in the target volume. Here we investigate the possibilities of 18O-enriched water (18-W), a potential contrast agent that could be incorporated in large proportions in live tissues by replacing regular water. We hypothesize that 18-W could also mitigate the problem of biological washout, as PET (18F) isotopes created inside live cells would remain trapped in the form of fluoride anions (F-), allowing its signal to be detected even hours after irradiation. To test our hypothesis, we designed an experiment with two main goals: first, prove that 18-W can incorporate enough 18O into a living organism to produce a detectable signal from 18F after proton irradiation, and second, determine the amount of activity that remains trapped inside the cells. The experiment was performed on a chicken embryo chorioallantoic membrane tumor model of head and neck cancer. Seven eggs with visible tumors were infused with 18-W and irradiated with 8-MeV protons (range in water: 0.74 mm), equivalent to clinical protons at the end of particle range. The activity produced after irradiation was detected and quantified in a small-animal PET-CT scanner, and further studied by placing ex-vivo tumours in a gamma radiation detector. In the acquired images, specific activity of 18F (originating from 18-W) could be detected in the tumour area of the alive chicken embryo up to 9 h after irradiation, which confirms that low-energy protons can indeed produce a detectable PET signal if a suitable contrast agent is employed. Moreover, dynamic PET studies in two of the eggs evidenced a minimal effect of biological washout, with 68% retained specific 18F activity at 8 h after irradiation. Furthermore, ex-vivo analysis of 4 irradiated tumours showed that up to 3% of oxygen atoms in the targets were replaced by 18O from infused 18-W, and evidenced an entrapment of 59% for specific activity of 18F after washing, supporting our hypothesis that F- ions remain trapped within the cells. An infusion of 18-W can incorporate 18O in animal tissues by replacing regular water inside cells, producing a PET signal when irradiated with low-energy protons that could be used for range verification in protontherapy. 18F produced inside cells remains entrapped and suffers from minimal biological washout, allowing for a sharper localization with longer PET acquisitions. Further studies must evaluate the feasibility of this technique in dosimetric conditions closer to clinical practice, in order to define potential protocols for its use in patients.


Asunto(s)
Neoplasias de la Mama , Terapia de Protones , Animales , Embrión de Pollo , Pollos , Medios de Contraste , Femenino , Radioisótopos de Flúor , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Protones , Agua
15.
Cancers (Basel) ; 13(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201840

RESUMEN

Breast cancer (BrCa) is the leading cause of death among women worldwide, with about one million new cases diagnosed each year. In spite of the improvements in diagnosis, early detection and treatment, there is still a high incidence of mortality and failure to respond to current therapies. With the use of several well-established biomarkers, such as hormone receptors and human epidermal growth factor receptor-2 (HER2), as well as genetic analysis, BrCa patients can be categorized into multiple subgroups: Luminal A, Luminal B, HER2-enriched, and Basal-like, with specific treatment strategies. Although chemotherapy and targeted therapies have greatly improved the survival of patients with BrCa, there is still a large number of patients who relapse or who fail to respond. The role of the tumor microenvironment in BrCa progression is becoming increasingly understood. Cancer-associated fibroblasts (CAFs) are the principal population of stromal cells in breast tumors. In this review, we discuss the current understanding of CAFs' role in altering the tumor response to therapeutic agents as well as in fostering metastasis in BrCa. In addition, we also review the available CAFs-directed molecular therapies and their potential implications for BrCa management.

16.
Biomolecules ; 11(5)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922633

RESUMEN

Metastasis is a process by which cancer cells escape from the location of the primary tumor invading normal tissues at distant organs. Chromosomal instability (CIN) is a hallmark of human cancer, associated with metastasis and therapeutic resistance. The centrosome plays a major role in organizing the microtubule cytoskeleton in animal cells regulating cellular architecture and cell division. Loss of centrosome integrity activates the p38-p53-p21 pathway, which results in cell-cycle arrest or senescence and acts as a cell-cycle checkpoint pathway. Structural and numerical centrosome abnormalities can lead to aneuploidy and CIN. New findings derived from studies on cancer and rare genetic disorders suggest that centrosome dysfunction alters the cellular microenvironment through Rho GTPases, p38, and JNK (c-Jun N-terminal Kinase)-dependent signaling in a way that is favorable for pro-invasive secretory phenotypes and aneuploidy tolerance. We here review recent data on how centrosomes act as complex molecular platforms for Rho GTPases and p38 MAPK (Mitogen activated kinase) signaling at the crossroads of CIN, cytoskeleton remodeling, and immune evasion via both cell-autonomous and non-autonomous mechanisms.


Asunto(s)
Centrosoma/metabolismo , Inflamación/patología , Metástasis de la Neoplasia/patología , Aneuploidia , Animales , Ciclo Celular/fisiología , Puntos de Control del Ciclo Celular/fisiología , Centrosoma/fisiología , Inestabilidad Cromosómica/fisiología , Citoesqueleto/fisiología , Humanos , Inflamación/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Sistema de Señalización de MAP Quinasas/fisiología , Microtúbulos/metabolismo , Metástasis de la Neoplasia/genética , Neoplasias/metabolismo , Transducción de Señal , Microambiente Tumoral , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Proteínas de Unión al GTP rho/metabolismo
17.
Sci Rep ; 11(1): 12287, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112843

RESUMEN

Metastasis is the process of cancer cell dissemination from primary tumors to different organs being the bone the preferred site for metastatic homing of prostate cancer (PCa) cells. Prostate tumorigenesis is a multi-stage process that ultimately tends to advance to become metastatic PCa. Once PCa patients develop skeletal metastases, they eventually succumb to the disease. Therefore, it is imperative to identify essential molecular drivers of this process to develop new therapeutic alternatives for the treatment of this devastating disease. Here, we have identified MAP4K4 as a relevant gene for metastasis in PCa. Our work shows that genetic deletion of MAP4K4 or pharmacological inhibition of its encoded kinase, HGK, inhibits metastatic PCa cells migration and clonogenic properties. Hence, MAP4K4 might promote metastasis and tumor growth. Mechanistically, our results indicate that HGK depleted cells exhibit profound differences in F-actin organization, increasing cell spreading and focal adhesion stability. Additionally, HGK depleted cells fails to respond to TNF-α stimulation and chemoattractant action. Moreover, here we show that HGK upregulation in PCa samples from TCGA and other databases correlates with a poor prognosis of the disease. Hence, we suggest that it could be used as prognostic biomarker to predict the appearance of an aggressive phenotype of PCa tumors and ultimately, the appearance of metastasis. In summary, our results highlight an essential role for HGK in the dissemination of PCa cells and its potential use as prognostic biomarker.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Metástasis de la Neoplasia/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Serina-Treonina Quinasas/genética , Actinas/metabolismo , Biomarcadores de Tumor , Adhesión Celular/genética , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Expresión Génica , Silenciador del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Modelos Biológicos , Estadificación de Neoplasias , Pronóstico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/mortalidad , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Necrosis Tumoral alfa
18.
Cell Death Dis ; 12(4): 348, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824275

RESUMEN

Glioblastoma (GBM) is the most aggressive tumor from the central nervous system (CNS). The current lack of efficient therapies makes essential to find new treatment strategies. C3G, a guanine nucleotide exchange factor for some Ras proteins, plays a dual role in cancer, but its function in GBM remains unknown. Database analyses revealed a reduced C3G mRNA expression in GBM patient samples. C3G protein levels were also decreased in a panel of human GBM cell lines as compared to astrocytes. Based on this, we characterized C3G function in GBM using in vitro and in vivo human GBM models. We report here that C3G downregulation promoted the acquisition of a more mesenchymal phenotype that enhanced the migratory and invasive capacity of GBM cells. This facilitates foci formation in anchorage-dependent and -independent growth assays and the generation of larger tumors in xenografts and chick chorioallantoic membrane (CAM) assays, but with a lower cell density, as proliferation was reduced. Mechanistically, C3G knock-down impairs EGFR signaling by reducing cell surface EGFR through recycling inhibition, while upregulating the activation of several other receptor tyrosine kinases (RTKs) that might promote invasion. In particular, FGF2, likely acting through FGFR1, promoted invasion of C3G-silenced GBM cells. Moreover, ERKs mediate this invasiveness, both in response to FGF2- and serum-induced chemoattraction. In conclusion, our data show the distinct dependency of GBM tumors on C3G for EGF/EGFR signaling versus other RTKs, suggesting that assessing C3G levels may discriminate GBM patient responders to different RTK inhibition protocols. Hence, patients with a low C3G expression might not respond to EGFR inhibitors.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Movimiento Celular/fisiología , Glioblastoma/metabolismo , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Regulación hacia Abajo , Receptores ErbB/metabolismo , Glioblastoma/patología , Humanos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/fisiología
19.
Nat Commun ; 12(1): 1827, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758187

RESUMEN

Hereditary cystatin C amyloid angiopathy is a dominantly inherited disease caused by a leucine to glutamine variant of human cystatin C (hCC). L68Q-hCC forms amyloid deposits in brain arteries associated with micro-infarcts, leading ultimately to paralysis, dementia and death in young adults. To evaluate the ability of molecules to interfere with aggregation of hCC while informing about cellular toxicity, we generated cells that produce and secrete WT and L68Q-hCC and have detected high-molecular weight complexes formed from the mutant protein. Incubations of either lysate or supernatant containing L68Q-hCC with reducing agents glutathione or N-acetyl-cysteine (NAC) breaks oligomers into monomers. Six L68Q-hCC carriers taking NAC had skin biopsies obtained to determine if hCC deposits were reduced following NAC treatment. Remarkably, ~50-90% reduction of L68Q-hCC staining was observed in five of the treated carriers suggesting that L68Q-hCC is a clinical target for reducing agents.


Asunto(s)
Acetilcisteína/farmacología , Proteínas Amiloidogénicas/metabolismo , Angiopatía Amiloide Cerebral Familiar/dietoterapia , Cistatina C/metabolismo , Cistatinas/metabolismo , Acetilcisteína/administración & dosificación , Acetilcisteína/análogos & derivados , Acetilcisteína/química , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/genética , Biopsia , Angiopatía Amiloide Cerebral Familiar/tratamiento farmacológico , Angiopatía Amiloide Cerebral Familiar/genética , Cistatina C/química , Cistatina C/genética , Cistatinas/química , Cistatinas/genética , Expresión Génica , Glutatión/química , Glutatión/farmacología , Células HEK293 , Humanos , Piel/efectos de los fármacos , Piel/metabolismo , Adulto Joven
20.
Cancers (Basel) ; 12(8)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823931

RESUMEN

The complexity of hepatocellular carcinoma (HCC) challenges the identification of disease-relevant signals. C3G, a guanine nucleotide exchange factor for Rap and other Ras proteins, plays a dual role in cancer acting as either a tumor suppressor or promoter depending on tumor type and stage. The potential relevance of C3G upregulation in HCC patients suggested by database analysis remains unknown. We have explored C3G function in HCC and the underlying mechanisms using public patient data and in vitro and in vivo human and mouse HCC models. We found that C3G is highly expressed in progenitor cells and neonatal hepatocytes, whilst being down-regulated in adult hepatocytes and re-expressed in human HCC patients, mouse HCC models and HCC cell lines. Moreover, high C3G mRNA levels correlate with tumor progression and a lower patient survival rate. C3G expression appears to be tightly modulated within the HCC program, influencing distinct cell biological properties. Hence, high C3G expression levels are necessary for cell tumorigenic properties, as illustrated by reduced colony formation in anchorage-dependent and -independent growth assays induced by permanent C3G silencing using shRNAs. Additionally, we demonstrate that C3G down-regulation interferes with primary HCC tumor formation in xenograft assays, increasing apoptosis and decreasing proliferation. In vitro assays also revealed that C3G down-regulation enhances the pro-migratory, invasive and metastatic properties of HCC cells through an epithelial-mesenchymal switch that favors the acquisition of a more mesenchymal phenotype. Consistently, a low C3G expression in HCC cells correlates with lung metastasis formation in mice. However, the subsequent restoration of C3G levels is associated with metastatic growth. Mechanistically, C3G down-regulation severely impairs HGF/MET signaling activation in HCC cells. Collectively, our results indicate that C3G is a key player in HCC. C3G promotes tumor growth and progression, and the modulation of its levels is essential to ensure distinct biological features of HCC cells throughout the oncogenic program. Furthermore, C3G requirement for HGF/MET signaling full activation provides mechanistic data on how it works, pointing out the relevance of assessing whether high C3G levels could identify HCC responders to MET inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA