Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(22): e2211087120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216524

RESUMEN

Mutations in genes encoding molecular chaperones can lead to chaperonopathies, but none have so far been identified causing congenital disorders of glycosylation. Here we identified two maternal half-brothers with a novel chaperonopathy, causing impaired protein O-glycosylation. The patients have a decreased activity of T-synthase (C1GALT1), an enzyme that exclusively synthesizes the T-antigen, a ubiquitous O-glycan core structure and precursor for all extended O-glycans. The T-synthase function is dependent on its specific molecular chaperone Cosmc, which is encoded by X-chromosomal C1GALT1C1. Both patients carry the hemizygous variant c.59C>A (p.Ala20Asp; A20D-Cosmc) in C1GALT1C1. They exhibit developmental delay, immunodeficiency, short stature, thrombocytopenia, and acute kidney injury (AKI) resembling atypical hemolytic uremic syndrome. Their heterozygous mother and maternal grandmother show an attenuated phenotype with skewed X-inactivation in blood. AKI in the male patients proved fully responsive to treatment with the complement inhibitor Eculizumab. This germline variant occurs within the transmembrane domain of Cosmc, resulting in dramatically reduced expression of the Cosmc protein. Although A20D-Cosmc is functional, its decreased expression, though in a cell or tissue-specific manner, causes a large reduction of T-synthase protein and activity, which accordingly leads to expression of varied amounts of pathological Tn-antigen (GalNAcα1-O-Ser/Thr/Tyr) on multiple glycoproteins. Transient transfection of patient lymphoblastoid cells with wild-type C1GALT1C1 partially rescued the T-synthase and glycosylation defect. Interestingly, all four affected individuals have high levels of galactose-deficient IgA1 in sera. These results demonstrate that the A20D-Cosmc mutation defines a novel O-glycan chaperonopathy and causes the altered O-glycosylation status in these patients.


Asunto(s)
Lesión Renal Aguda , Chaperonas Moleculares , Masculino , Humanos , Chaperonas Moleculares/metabolismo , Mutación , Polisacáridos/metabolismo , Células Germinativas/metabolismo
2.
Proc Natl Acad Sci U S A ; 106(14): 5842-7, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19289823

RESUMEN

We describe members of 4 kindreds with a previously unrecognized syndrome characterized by seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (hypokalemia, metabolic alkalosis, and hypomagnesemia). By analysis of linkage we localize the putative causative gene to a 2.5-Mb segment of chromosome 1q23.2-23.3. Direct DNA sequencing of KCNJ10, which encodes an inwardly rectifying K(+) channel, identifies previously unidentified missense or nonsense mutations on both alleles in all affected subjects. These mutations alter highly conserved amino acids and are absent among control chromosomes. Many of these mutations have been shown to cause loss of function in related K(+) channels. These findings demonstrate that loss-of-function mutations in KCNJ10 cause this syndrome, which we name SeSAME. KCNJ10 is expressed in glia in the brain and spinal cord, where it is believed to take up K(+) released by neuronal repolarization, in cochlea, where it is involved in the generation of endolymph, and on the basolateral membrane in the distal nephron. We propose that KCNJ10 is required in the kidney for normal salt reabsorption in the distal convoluted tubule because of the need for K(+) recycling across the basolateral membrane to enable normal activity of the Na(+)-K(+)-ATPase; loss of this function accounts for the observed electrolyte defects. Mice deficient for KCNJ10 show a related phenotype with seizures, ataxia, and hearing loss, further supporting KCNJ10's role in this syndrome. These findings define a unique human syndrome, and establish the essential role of basolateral K(+) channels in renal electrolyte homeostasis.


Asunto(s)
Anomalías Múltiples/genética , Mutación , Canales de Potasio de Rectificación Interna/genética , Anomalías Múltiples/etiología , Animales , Ataxia , Cromosomas Humanos Par 1 , Pérdida Auditiva Sensorineural/genética , Humanos , Discapacidad Intelectual/genética , Ratones , Ratones Noqueados , Canales de Potasio de Rectificación Interna/deficiencia , Canales de Potasio de Rectificación Interna/fisiología , Convulsiones/genética , Síndrome , Distribución Tisular , Equilibrio Hidroelectrolítico/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-34697224

RESUMEN

BACKGROUND AND OBJECTIVES: CSF in antibody-defined autoimmune encephalitis (AE) subtypes shows subtype-dependent degrees of inflammation ranging from rare and often mild to frequent and often robust. AEs with NMDA receptor antibodies (NMDAR-E) and leucine-rich glioma-inactivated protein 1 antibodies (LGI1-E) represent opposite ends of this spectrum: NMDAR-E with typically frequent/robust and LGI1-E with rare/mild CSF inflammation. For a more in-depth analysis, we characterized CSF findings in acute, therapy-naive NMDAR-E and LGI1-E in a multicentric, retrospective, cross-sectional setting. METHODS: Eighty-two patients with NMDAR-E and 36 patients with LGI1-E from the GErman NEtwork for Research of AuToimmune Encephalitis (GENERATE) with lumbar puncture within 90 days of onset and before immunotherapy were included. CSF parameters comprised leukocytes, oligoclonal bands (OCBs), and CSF/serum ratios for albumin, immunoglobulin G (IgG), A (IgA), and M (IgM), the latter 3 converted to Z scores according to Reiber formulas. The MRZ reaction was tested in 14 patients with NMDAR-E and 6 patients with LGI1-E, respectively. RESULTS: CSF was abnormal in 94% of NMDAR-E but only in 36% of LGI1-E patients. Robust quantitative intrathecal immunoglobulin synthesis (IIS, IgG > IgM >> IgA) was characteristic for NMDAR-E, but absent in LGI-E. In NMDAR-E, CSF leukocytes were higher when IIS was present or more pronounced. In addition, in NMDAR-E, CSF leukocytes were lower and IIS occurred less often and if so to a lesser degree at older age. Patients with NMDAR-E with severe functional impairment more often had positive OCBs. In CSF obtained later than 3 weeks of onset, leukocytes were lower. In parallel, the correlation of leukocytes with IIS disappeared as IIS was partially independent of disease duration. The MRZ reaction was positive in 5 (36%) patients with NMDAR-E. All these associations were completely absent in LGI1-E. Here, younger patients showed more blood-CSF barrier dysfunction. In LGI1-E, but not in NMDAR-E, the blood-CSF barrier was more dysfunctional when CSF leukocytes were higher. DISCUSSION: NMDAR-E and LGI-E differ in their typical extent of CSF inflammation. In addition, the patterns formed by the different inflammatory CSF parameters and their relationship with disease severity, age, and disease duration are subtype-characteristic. Moreover, signs for multiple sclerosis-like chronic inflammation are present in a subgroup of patients with NMDAR-E. These CSF patterns might be markers for the different immunopathogeneses of LGI1-E and NMDAR-E.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/líquido cefalorraquídeo , Autoanticuerpos/líquido cefalorraquídeo , Enfermedades Autoinmunes del Sistema Nervioso/líquido cefalorraquídeo , Encefalitis/líquido cefalorraquídeo , Péptidos y Proteínas de Señalización Intracelular/inmunología , Sistema de Registros , Enfermedad Aguda , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Estudios Retrospectivos , Adulto Joven
4.
Eur J Med Genet ; 63(4): 103826, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31857255

RESUMEN

Mutations in spectrin beta non-erythrocytic 4 (SPTBN4) have been linked to congenital hypotonia, intellectual disability and motor neuropathy. Here we report on two siblings with a homozygous splice-site mutation in the SPTBN4 gene, lacking previously reported features of the disorder such as seizures, feeding difficulties, respiratory difficulties or profound intellectual disability. Our findings indicate that muscular hypotonia, myopathic facies with ptosis and axonal neuropathy can be the core clinical features in the SPTBN4 disorder and suggest that SPTBN4 mutation analysis should be considered in infants with marked axonal neuropathy.


Asunto(s)
Axones/patología , Neuropatía Hereditaria Motora y Sensorial/genética , Hipotonía Muscular/genética , Isoformas de Proteínas/genética , Espectrina/genética , Axones/ultraestructura , Niño , Preescolar , Femenino , Neuropatía Hereditaria Motora y Sensorial/patología , Homocigoto , Humanos , Masculino , Mutación , Fenotipo
5.
Diabetes Res Clin Pract ; 141: 229-236, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29763710

RESUMEN

Friedreich ataxia (FRDA) is a multisystem autosomal recessive disease with progressive clinical course involving the neuromuscular and endocrine system. Diabetes mellitus (DM) is one typical non-neurological manifestation, caused by beta cell failure and insulin resistance. Because of its rarity, knowledge on DM in FRDA is limited. Based on data from 200,301 patients with DM of the German-Austrian diabetes registry (DPV) and two exemplary patient reports, characteristics of patients with DM and FRDA are compared with classical type 1 or type 2 diabetes. Diabetes phenotype in FRDA is intermediate between type 1 and type 2 diabetes with ketoacidosis being frequent at presentation and blood glucose levels similar to T1Dm but higher than in T2Dm (356 ±â€¯165 and 384 ±â€¯203 mg/dl). 63.2% of FRDA patients received insulin monotherapy, 21% insulin plus oral antidiabetics and 15.8% lifestyle change only, applying similar doses of insulin in all three groups. FRDA patients did not show overweight and HbA1c levels were even lower than in T1Dm or T2Dm patients, respectively, indicating good overall diabetes control. FRDADm can be controlled by individualized treatment regimen with insulin or oral antidiabetics. Patients with DM in FRDA may show a relevant risk to ketoacidotic complications, which should be avoided.


Asunto(s)
Diabetes Mellitus Tipo 2/etiología , Ataxia de Friedreich/complicaciones , Adulto , Austria , Diabetes Mellitus Tipo 2/patología , Femenino , Ataxia de Friedreich/patología , Alemania , Humanos , Insulina/uso terapéutico , Masculino , Sistema de Registros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA