Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
PLoS Genet ; 18(3): e1010146, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35344558

RESUMEN

Phage-inducible chromosomal islands (PICIs) are a widespread family of highly mobile genetic elements that disseminate virulence and toxin genes among bacterial populations. Since their life cycle involves induction by helper phages, they are important players in phage evolution and ecology. PICIs can interfere with the lifecycle of their helper phages at different stages resulting frequently in reduced phage production after infection of a PICI-containing strain. Since phage defense systems have been recently shown to be beneficial for the acquisition of exogenous DNA via horizontal gene transfer, we hypothesized that PICIs could provide a similar benefit to their hosts and tested the impact of PICIs in recipient strains on host cell viability, phage propagation and transfer of genetic material. Here we report an important role for PICIs in bacterial evolution by promoting the survival of phage-mediated transductants of chromosomal or plasmid DNA. The presence of PICIs generates favorable conditions for population diversification and the inheritance of genetic material being transferred, such as antibiotic resistance and virulence genes. Our results show that by interfering with phage reproduction, PICIs can protect the bacterial population from phage attack, increasing the overall survival of the bacterial population as well as the transduced cells. Moreover, our results also demonstrate that PICIs reduce the frequency of lysogenization after temperate phage infection, creating a more genetically diverse bacterial population with increased bet-hedging opportunities to adapt to new niches. In summary, our results identify a new role for the PICIs and highlight them as important drivers of bacterial evolution.


Asunto(s)
Bacteriófagos , Bacterias/genética , Bacteriófagos/genética , Transferencia de Gen Horizontal/genética , Islas Genómicas/genética , Reproducción
2.
PLoS Pathog ; 17(5): e1009606, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34015034

RESUMEN

The emergence of new pathogens is a major threat to public and veterinary health. Changes in bacterial habitat such as a switch in host or disease tropism are typically accompanied by genetic diversification. Staphylococcus aureus is a multi-host bacterial species associated with human and livestock infections. A microaerophilic subspecies, Staphylococcus aureus subsp. anaerobius, is responsible for Morel's disease, a lymphadenitis restricted to sheep and goats. However, the evolutionary history of S. aureus subsp. anaerobius and its relatedness to S. aureus are unknown. Population genomic analyses of clinical S. aureus subsp. anaerobius isolates revealed a highly conserved clone that descended from a S. aureus progenitor about 1000 years ago before differentiating into distinct lineages that contain African and European isolates. S. aureus subsp. anaerobius has undergone limited clonal expansion, with a restricted population size, and an evolutionary rate 10-fold slower than S. aureus. The transition to its current restricted ecological niche involved acquisition of a pathogenicity island encoding a ruminant host-specific effector of abscess formation, large chromosomal re-arrangements, and the accumulation of at least 205 pseudogenes, resulting in a highly fastidious metabolism. Importantly, expansion of ~87 insertion sequences (IS) located largely in intergenic regions provided distinct mechanisms for the control of expression of flanking genes, including a novel mechanism associated with IS-mediated anti-anti-sense decoupling of ancestral gene repression. Our findings reveal the remarkable evolutionary trajectory of a host-restricted bacterial pathogen that resulted from extensive remodelling of the S. aureus genome through an array of diverse mechanisms in parallel.


Asunto(s)
Genoma Bacteriano/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus/genética , Animales , Evolución Biológica , Ecosistema , Genómica , Humanos , Ganado , Filogenia , Transcriptoma , Secuenciación Completa del Genoma
3.
FASEB J ; 33(11): 12324-12335, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31442078

RESUMEN

GNA2091 is one of the components of the 4-component meningococcal serogroup B vaccine (4CMenB) vaccine and is highly conserved in all meningococcal strains. However, its functional role has not been fully characterized. Here we show that nmb2091 is part of an operon and is cotranscribed with the nmb2089, nmb2090, and nmb2092 adjacent genes, and a similar but reduced operon arrangement is conserved in many other gram-negative bacteria. Deletion of the nmb2091 gene causes an aggregative phenotype with a mild defect in cell separation; differences in the outer membrane composition and phospholipid profile, in particular in the phosphoethanolamine levels; an increased level of outer membrane vesicles; and deregulation of the zinc-responsive genes such as znuD. Finally, the ∆2091 strain is attenuated with respect to the wild-type strain in competitive index experiments in the infant rat model of meningococcal infection. Altogether these data suggest that GNA2091 plays important roles in outer membrane architecture, biogenesis, homeostasis, and in meningococcal survival in vivo, and a model for its role is discussed. These findings highlight the importance of GNA2091 as a vaccine component.-Seib, K. L., Haag, A. F., Oriente, F., Fantappiè, L., Borghi, S., Semchenko, E. A., Schulz, B. L., Ferlicca, F., Taddei, A. R., Giuliani, M. M., Pizza, M., Delany, I. The meningococcal vaccine antigen GNA2091 is an analogue of YraP and plays key roles in outer membrane stability and virulence.


Asunto(s)
Antígenos Bacterianos/fisiología , Membrana Externa Bacteriana/química , Vacunas Meningococicas , Animales , Antígenos Bacterianos/genética , Membrana Externa Bacteriana/fisiología , Infecciones Meningocócicas/mortalidad , Vacunas Meningococicas/genética , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/patogenicidad , Operón , Proteínas Periplasmáticas/fisiología , Ratas , Ratas Wistar , Regulón , Virulencia , Zinc/farmacología
4.
Nucleic Acids Res ; 45(11): 6507-6519, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28475766

RESUMEN

DNA-single strand annealing proteins (SSAPs) are recombinases frequently encoded in the genome of many bacteriophages. As SSAPs can promote homologous recombination among DNA substrates with an important degree of divergence, these enzymes are involved both in DNA repair and in the generation of phage mosaicisms. Here, analysing Sak and Sak4 as representatives of two different families of SSAPs present in phages infecting the clinically relevant bacterium Staphylococcus aureus, we demonstrate for the first time that these enzymes are absolutely required for phage reproduction. Deletion of the genes encoding these enzymes significantly reduced phage replication and the generation of infectious particles. Complementation studies revealed that these enzymes are required both in the donor (after prophage induction) and in the recipient strain (for infection). Moreover, our results indicated that to perform their function SSAPs require the activity of their cognate single strand binding (Ssb) proteins. Mutational studies demonstrated that the Ssb proteins are also required for phage replication, both in the donor and recipient strain. In summary, our results expand the functions attributed to the Sak and Sak4 proteins, and demonstrate that both SSAPs and Ssb proteins are essential for the life cycle of temperate staphylococcal phages.


Asunto(s)
Bacteriófagos/fisiología , Recombinasas/fisiología , Staphylococcus aureus/virología , Proteínas Virales/fisiología , Replicación Viral , Replicación del ADN , Proteínas de Unión al ADN/fisiología , Mutación
5.
PLoS Pathog ; 12(4): e1005557, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27105075

RESUMEN

Neisseria adhesin A (NadA) is present on the meningococcal surface and contributes to adhesion to and invasion of human cells. NadA is also one of three recombinant antigens in the recently-approved Bexsero vaccine, which protects against serogroup B meningococcus. The amount of NadA on the bacterial surface is of direct relevance in the constant battle of host-pathogen interactions: it influences the ability of the pathogen to engage human cell surface-exposed receptors and, conversely, the bacterial susceptibility to the antibody-mediated immune response. It is therefore important to understand the mechanisms which regulate nadA expression levels, which are predominantly controlled by the transcriptional regulator NadR (Neisseria adhesin A Regulator) both in vitro and in vivo. NadR binds the nadA promoter and represses gene transcription. In the presence of 4-hydroxyphenylacetate (4-HPA), a catabolite present in human saliva both under physiological conditions and during bacterial infection, the binding of NadR to the nadA promoter is attenuated and nadA expression is induced. NadR also mediates ligand-dependent regulation of many other meningococcal genes, for example the highly-conserved multiple adhesin family (maf) genes, which encode proteins emerging with important roles in host-pathogen interactions, immune evasion and niche adaptation. To gain insights into the regulation of NadR mediated by 4-HPA, we combined structural, biochemical, and mutagenesis studies. In particular, two new crystal structures of ligand-free and ligand-bound NadR revealed (i) the molecular basis of 'conformational selection' by which a single molecule of 4-HPA binds and stabilizes dimeric NadR in a conformation unsuitable for DNA-binding, (ii) molecular explanations for the binding specificities of different hydroxyphenylacetate ligands, including 3Cl,4-HPA which is produced during inflammation, (iii) the presence of a leucine residue essential for dimerization and conserved in many MarR family proteins, and (iv) four residues (His7, Ser9, Asn11 and Phe25), which are involved in binding 4-HPA, and were confirmed in vitro to have key roles in the regulatory mechanism in bacteria. Overall, this study deepens our molecular understanding of the sophisticated regulatory mechanisms of the expression of nadA and other genes governed by NadR, dependent on interactions with niche-specific signal molecules that may play important roles during meningococcal pathogenesis.


Asunto(s)
Proteínas Bacterianas/química , Meningitis Meningocócica/inmunología , Proteínas Represoras/química , Factores de Virulencia/química , Adhesinas Bacterianas/biosíntesis , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Western Blotting , Rastreo Diferencial de Calorimetría , Cromatografía Líquida de Alta Presión , Regulación Bacteriana de la Expresión Génica , Humanos , Espectroscopía de Resonancia Magnética , Mutagénesis Sitio-Dirigida , Neisseria meningitidis Serogrupo B/química , Neisseria meningitidis Serogrupo B/inmunología , Conformación Proteica , Proteínas Represoras/inmunología , Proteínas Represoras/metabolismo , Resonancia por Plasmón de Superficie , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo , Difracción de Rayos X
6.
Curr Top Microbiol Immunol ; 409: 145-198, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-26728068

RESUMEN

Staphylococcus aureus is a versatile, opportunistic human pathogen that can asymptomatically colonize a human host but can also cause a variety of cutaneous and systemic infections. The ability of S. aureus to adapt to such diverse environments is reflected in the presence of complex regulatory networks fine-tuning metabolic and virulence gene expression. One of the most widely distributed mechanisms is the two-component signal transduction system (TCS) which allows a pathogen to alter its gene expression profile in response to environmental stimuli. The simpler TCSs consist of only a transmembrane histidine kinase (HK) and a cytosolic response regulator. S. aureus encodes a total of 16 conserved pairs of TCSs that are involved in diverse signalling cascades ranging from global virulence gene regulation (e.g. quorum sensing by the Agr system), the bacterial response to antimicrobial agents, cell wall metabolism, respiration and nutrient sensing. These regulatory circuits are often interconnected and affect each other's expression, thus fine-tuning staphylococcal gene regulation. This manuscript gives an overview of the current knowledge of staphylococcal environmental sensing by TCS and its influence on virulence gene expression and virulence itself. Understanding bacterial gene regulation by TCS can give major insights into staphylococcal pathogenicity and has important implications for knowledge-based drug design and vaccine formulation.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Humanos , Transducción de Señal , Virulencia
7.
Infect Immun ; 85(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28784927

RESUMEN

Staphylococcus aureus is an opportunistic human pathogen and a major cause of invasive infections such as bacteremia, endocarditis, pneumonia, and wound infections. FhuD2 is a staphylococcal lipoprotein involved in the uptake of iron-hydroxymate and is under the control of the iron uptake regulator Fur. This protein is part of an investigational multicomponent vaccine formulation that has shown protective efficacy in several murine models of infection. Even though fhuD2 expression has been shown to be upregulated in murine kidneys infected with S. aureus, it is not known whether the bacterium undergoes increased iron deprivation during prolonged infection. Furthermore, different S. aureus infection niches might provide different environments and levels of iron availability, resulting in different fhuD2 expression patterns among organs of the same host. To address these questions, we characterized the in vitro expression of the fhuD2 gene and confirmed Fur-dependent regulation of its expression. We further investigated its expression in mice infected with a bioluminescent reporter strain of S. aureus expressing the luciferase operon under the control of the fhuD2 promoter. The emission of bioluminescence in different organs was followed over a 7-day time course, and quantitative real-time PCR analysis of the RNA transcribed from the endogenous fhuD2 gene was performed. Using this approach, we were able to show that fhuD2 expression was induced during infection in all organs analyzed and that differences in expression were observed at different time points and in different infected organs. Our data suggest that S. aureus undergoes increased iron deprivation during the progression of infection in diverse host organs and accordingly induces dedicated iron acquisition mechanisms. Since FhuD2 plays a central role in providing the pathogen with the required iron, further knowledge of the patterns of fhuD2 expression in vivo during infection will be instrumental in better defining the role of this antigen in S. aureus pathogenesis and as a vaccine antigen.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Receptores de Lipoproteína/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/metabolismo , Microscopía Intravital , Luciferasas/genética , Mediciones Luminiscentes , Ratones , Operón , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Lipoproteína/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad
8.
Appl Microbiol Biotechnol ; 100(7): 3197-206, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26685857

RESUMEN

In vivo imaging of bioluminescent bacteria permits their visualization in infected mice, allowing spatial and temporal evaluation of infection progression. Most available bioluminescent strains were obtained by integration of the luciferase genes into the bacterial chromosome, a challenging and time-consuming approach. Recently, episomal plasmids were used, which were introduced in bacteria and expressed all genes required for bioluminescence emission. However, the plasmid was progressively lost in vitro and in vivo, if bacteria were not maintained under antibiotic selective pressure. Increased stability could be obtained inserting into the plasmid backbone sequences that assured plasmid partition between daughter bacterial cells, or caused death of bacteria that had lost the plasmid. So far, no detailed analysis was performed of either plasmid stability in vivo or contribution of different stabilizing sequence types. Here we report the construction of a plasmid, which includes the Photorhabdus luminescens lux cassette expressed under the control of a Staphylococcus aureus specific gene promoter, and toxin/antitoxin (T/A) and partition sequences (Par) conferring stability and transmissibility of the plasmid. Following infection of mice with S. aureus carrying this plasmid, we demonstrated that the promoter-lux fusion was functional in vivo, that the plasmid was retained by 70-100% of bacterial cells 7 days post-infection, and that both stabilizing sequence types were required to maximize plasmid retention. These data suggest that the plasmid can be a valuable tool to study gene expression and bacterial spread in small laboratory animals infected with S. aureus or possibly other Gram-positive human pathogens.


Asunto(s)
Diagnóstico por Imagen/métodos , Luciferasas/genética , Photorhabdus/genética , Plásmidos/metabolismo , Infecciones Estafilocócicas/diagnóstico por imagen , Staphylococcus aureus/genética , Animales , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Femenino , Genes Reporteros , Ingeniería Genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Luciferasas/metabolismo , Mediciones Luminiscentes , Ratones , Photorhabdus/metabolismo , Plásmidos/química , Regiones Promotoras Genéticas , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo
9.
PLoS Biol ; 9(10): e1001169, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21990963

RESUMEN

Sinorhizobium meliloti differentiates into persisting, nitrogen-fixing bacteroids within root nodules of the legume Medicago truncatula. Nodule-specific cysteine-rich antimicrobial peptides (NCR AMPs) and the bacterial BacA protein are essential for bacteroid development. However, the bacterial factors central to the NCR AMP response and the in planta role of BacA are unknown. We investigated the hypothesis that BacA is critical for the bacterial response towards NCR AMPs. We found that BacA was not essential for NCR AMPs to induce features of S. meliloti bacteroids in vitro. Instead, BacA was critical to reduce the amount of NCR AMP-induced membrane permeabilization and bacterial killing in vitro. Within M. truncatula, both wild-type and BacA-deficient mutant bacteria were challenged with NCR AMPs, but this resulted in persistence of the wild-type bacteria and rapid cell death of the mutant bacteria. In contrast, BacA was dispensable for bacterial survival in an M. truncatula dnf1 mutant defective in NCR AMP transport to the bacterial compartment. Therefore, BacA is critical for the legume symbiosis by protecting S. meliloti against the bactericidal effects of NCR AMPs. Host AMPs are ubiquitous in nature and BacA proteins are essential for other chronic host infections by symbiotic and pathogenic bacteria. Hence, our findings suggest that BacA-mediated protection of bacteria against host AMPs is a critical stage in the establishment of different prolonged host infections.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Cisteína/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Medicago truncatula/microbiología , Sinorhizobium meliloti/efectos de los fármacos , Sinorhizobium meliloti/fisiología , Simbiosis/efectos de los fármacos , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/química , Proteínas Bacterianas/metabolismo , Medicago truncatula/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Datos de Secuencia Molecular , Mutación/genética , Estructura Secundaria de Proteína , Sinorhizobium meliloti/citología
10.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37333372

RESUMEN

The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr increased both respiration and fermentation but decreased ATP levels and growth, suggesting that Δagr cells assume a hyperactive metabolic state in response to reduced metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived "memory" of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Nox2-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.

11.
Elife ; 122024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687677

RESUMEN

The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived 'memory' of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Peróxido de Hidrógeno , Estrés Oxidativo , Percepción de Quorum , Staphylococcus aureus , Transactivadores , Staphylococcus aureus/genética , Staphylococcus aureus/fisiología , Staphylococcus aureus/metabolismo , Percepción de Quorum/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Animales , Transactivadores/metabolismo , Transactivadores/genética , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Ratones , Infecciones Estafilocócicas/microbiología , Viabilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Eliminación de Gen
12.
J Biol Chem ; 287(14): 10791-8, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22351783

RESUMEN

The root nodules of certain legumes including Medicago truncatula produce >300 different nodule-specific cysteine-rich (NCR) peptides. Medicago NCR antimicrobial peptides (AMPs) mediate the differentiation of the bacterium, Sinorhizobium meliloti into a nitrogen-fixing bacteroid within the legume root nodules. In vitro, NCR AMPs such as NCR247 induced bacteroid features and exhibited antimicrobial activity against S. meliloti. The bacterial BacA protein is critical to prevent S. meliloti from being hypersensitive toward NCR AMPs. NCR AMPs are cationic and have conserved cysteine residues, which form disulfide (S-S) bridges. However, the natural configuration of NCR AMP S-S bridges and the role of these in the activity of the peptide are unknown. In this study, we found that either cysteine replacements or S-S bond modifications influenced the activity of NCR247 against S. meliloti. Specifically, either substitution of cysteines for serines, changing the S-S bridges from cysteines 1-2, 3-4 to 1-3, 2-4 or oxidation of NCR247 lowered its activity against S. meliloti. We also determined that BacA specifically protected S. meliloti against oxidized NCR247. Due to the large number of different NCRs synthesized by legume root nodules and the importance of bacterial BacA proteins for prolonged host infections, these findings have important implications for analyzing the function of these novel peptides and the protective role of BacA in the bacterial response toward these peptides.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Cisteína , Disulfuros/química , Medicago truncatula/química , Nódulos de las Raíces de las Plantas/química , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos , Oxidación-Reducción , Sinorhizobium meliloti/efectos de los fármacos , Sinorhizobium meliloti/metabolismo
13.
Nat Commun ; 14(1): 6599, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852980

RESUMEN

Bacteriophages (phages) are the most abundant biological entities on Earth, exerting a significant influence on the dissemination of bacterial virulence, pathogenicity, and antimicrobial resistance. Temperate phages integrate into the bacterial chromosome in a dormant state through intricate regulatory mechanisms. These mechanisms repress lytic genes while facilitating the expression of integrase and the CI master repressor. Upon bacterial SOS response activation, the CI repressor undergoes auto-cleavage, producing two fragments with the N-terminal domain (NTD) retaining significant DNA-binding ability. The process of relieving CI NTD repression, essential for prophage induction, remains unknown. Here we show a specific interaction between the ClpX protease and CI NTD repressor fragment of phages Ф11 and 80α in Staphylococcus aureus. This interaction is necessary and sufficient for prophage activation after SOS-mediated CI auto-cleavage, defining the final stage in the prophage induction cascade. Our findings unveil unexpected roles of bacterial protease ClpX in phage biology.


Asunto(s)
Bacteriófagos , Activación Viral , Activación Viral/genética , Staphylococcus aureus/genética , Péptido Hidrolasas/genética , Profagos/genética
14.
Microbiol Spectr ; 11(1): e0257422, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36688711

RESUMEN

Staphylococcus aureus is a clinically important bacterial pathogen that has become resistant to treatment with most routinely used antibiotics. Alternative strategies, such as vaccination and phage therapy, are therefore actively being investigated to prevent or combat staphylococcal infections. Vaccination requires that vaccine targets are expressed at sufficient quantities during infection so that they can be targeted by the host's immune system. While our knowledge of in vitro expression levels of putative vaccine candidates is comprehensive, crucial in vivo expression data are scarce and promising vaccine candidates during in vitro assessment often prove ineffective in preventing S. aureus infection. Here, we show how a newly developed high-throughput quantitative reverse transcription-PCR (qRT-PCR) assay monitoring the expression of 84 staphylococcal genes encoding mostly virulence factors can inform the selection and design of effective vaccine candidates against staphylococcal infections. We show that this assay can accurately quantify mRNA expression levels of these genes in several host organs relying only on very limited amounts of bacterial mRNA in each sample. We selected two highly expressed genes, lukE and lukD, encoding pore-forming leukotoxins, to inform the design of detoxified recombinant proteins and showed that immunization with recombinant genetically detoxified LukED antigens conferred protection against staphylococcal skin infection in mice. Consequently, knowledge of in vivo-expressed virulence determinants can be successfully deployed to identify and select promising candidates for optimized design of effective vaccine antigens against S. aureus. Notably, this approach should be broadly applicable to numerous other pathogens. IMPORTANCE Vaccination is an attractive strategy for preventing bacterial infections in an age of increased antimicrobial resistance. However, vaccine development frequently suffers significant setbacks when candidate antigens that show promising results in in vitro experimentation fail to protect from disease. An alluring strategy is to focus resources on developing bacterial virulence factors that are expressed during disease establishment or maintenance and are critical for bacterial in-host survival as vaccine targets. While expression profiles of many virulence factors have been characterized in detail in vitro, our knowledge of their in vivo expression profiles is still scarce. Here, using a high-throughput qRT-PCR approach, we identified two highly expressed leukotoxins in a murine infection model and showed that genetically detoxified derivatives of these elicited a protective immune response in a murine skin infection model. Therefore, in vivo gene expression can inform the selection of promising candidates for the design of effective vaccine antigens.


Asunto(s)
Infecciones Estafilocócicas , Vacunas , Animales , Ratones , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/metabolismo , Leucocidinas/genética , Leucocidinas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Vacunas/metabolismo , Infecciones Estafilocócicas/microbiología , Perfilación de la Expresión Génica
15.
J Biol Chem ; 286(20): 17455-66, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21454518

RESUMEN

Sinorhizobium meliloti forms a symbiosis with the legume alfalfa, whereby it differentiates into a nitrogen-fixing bacteroid. The lipid A species of S. meliloti are modified with very long-chain fatty acids (VLCFAs), which play a central role in bacteroid development. A six-gene cluster was hypothesized to be essential for the biosynthesis of VLCFA-modified lipid A. Previously, two cluster gene products, AcpXL and LpxXL, were found to be essential for S. meliloti lipid A VLCFA biosynthesis. In this paper, we show that the remaining four cluster genes are all involved in lipid A VLCFA biosynthesis. Therefore, we have identified novel gene products involved in the biosynthesis of these unusual lipid modifications. By physiological characterization of the cluster mutant strains, we demonstrate the importance of this gene cluster in the legume symbiosis and for growth in the absence of salt. Bacterial LPS species modified with VLCFAs are substantially less immunogenic than Escherichia coli LPS species, which lack VLCFAs. However, we show that the VLCFA modifications do not suppress the immunogenicity of S. meliloti LPS or affect the ability of S. meliloti to induce fluorescent plant defense molecules within the legume. Because VLCFA-modified lipids are produced by other rhizobia and mammalian pathogens, these findings will also be important in understanding the function and biosynthesis of these unusual fatty acids in diverse bacterial species.


Asunto(s)
Ácidos Grasos/biosíntesis , Lípido A/biosíntesis , Mutación , Sinorhizobium meliloti/metabolismo , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fabaceae/microbiología , Ácidos Grasos/genética , Lípido A/genética , Sinorhizobium meliloti/genética , Simbiosis/fisiología
16.
Microorganisms ; 10(4)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35456883

RESUMEN

Neisseria meningitidis colonizes the nasopharynx of humans, and pathogenic strains can disseminate into the bloodstream, causing septicemia and meningitis. NHBA is a surface-exposed lipoprotein expressed by all N. meningitidis strains in different isoforms. Diverse roles have been reported for NHBA in heparin-mediated serum resistance, biofilm formation, and adherence to host tissues. We determined that temperature controls the expression of NHBA in all strains tested, with increased levels at 30−32 °C compared to 37 °C. Higher NHBA expression at lower temperatures was measurable both at mRNA and protein levels, resulting in higher surface exposure. Detailed molecular analysis indicated that multiple molecular mechanisms are responsible for the thermoregulated NHBA expression. The comparison of mRNA steady-state levels and half-lives at 30 °C and 37 °C demonstrated an increased mRNA stability/translatability at lower temperatures. Protein stability was also impacted, resulting in higher NHBA stability at lower temperatures. Ultimately, increased NHBA expression resulted in higher susceptibility to complement-mediated killing. We propose that NHBA regulation in response to temperature downshift might be physiologically relevant during transmission and the initial step(s) of interaction within the host nasopharynx. Together these data describe the importance of NHBA both as a virulence factor and as a vaccine antigen during neisserial colonization and invasion.

17.
Nat Commun ; 12(1): 6509, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750368

RESUMEN

It is commonly assumed that the horizontal transfer of most bacterial chromosomal genes is limited, in contrast to the frequent transfer observed for typical mobile genetic elements. However, this view has been recently challenged by the discovery of lateral transduction in Staphylococcus aureus, where temperate phages can drive the transfer of large chromosomal regions at extremely high frequencies. Here, we analyse previously published as well as new datasets to compare horizontal gene transfer rates mediated by different mechanisms in S. aureus and Salmonella enterica. We find that the horizontal transfer of core chromosomal genes via lateral transduction can be more efficient than the transfer of classical mobile genetic elements via conjugation or generalized transduction. These results raise questions about our definition of mobile genetic elements, and the potential roles played by lateral transduction in bacterial evolution.


Asunto(s)
Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , Salmonella enterica/genética , Staphylococcus aureus/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/metabolismo , Transferencia de Gen Horizontal/genética , Transferencia de Gen Horizontal/fisiología , Salmonella enterica/metabolismo , Staphylococcus aureus/metabolismo , Transducción Genética
18.
Nat Microbiol ; 6(10): 1300-1308, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34518655

RESUMEN

Staphylococcal pathogenicity islands (SaPIs) are a family of closely related mobile chromosomal islands that encode and disseminate the superantigen toxins, toxic shock syndrome toxin 1 and superantigen enterotoxin B (SEB). They are regulated by master repressors, which are counteracted by helper phage-encoded proteins, thereby inducing their excision, replication, packaging and intercell transfer. SaPIs are major components of the staphylococcal mobilome, occupying five chromosomal att sites, with many strains harbouring two or more. As regulatory interactions between co-resident SaPIs could have profound effects on the spread of superantigen pathobiology, we initiated the current study to search for such interactions. Using classical genetics, we found that, with one exception, their regulatory systems do not cross-react. The exception was SaPI3, which was originally considered defective because it could not be mobilized by any known helper phage. We show here that SaPI3 has an atypical regulatory module and is induced not by a phage but by many other SaPIs, including SaPI2, SaPIbov1 and SaPIn1, each encoding a conserved protein, Sis, which counteracts the SaPI3 repressor, generating an intracellular regulatory cascade: the co-resident SaPI, when conventionally induced by a helper phage, expresses its sis gene which, in turn, induces SaPI3, enabling it to spread. Using bioinformatics analysis, we have identified more than 30 closely related coancestral SEB-encoding SaPI3 relatives occupying the same att site and controlled by a conserved regulatory module, immA-immR-str'. This module is functionally analogous but unrelated to the typical SaPI regulatory module, stl-str. As SaPIs are phage satellites, SaPI3 and its relatives are SaPI satellites.


Asunto(s)
Islas Genómicas/genética , Staphylococcus aureus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Replicación del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Transferencia de Gen Horizontal , Fagos de Staphylococcus/fisiología , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/virología , Activación Transcripcional
19.
J Bacteriol ; 192(11): 2920-8, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20363949

RESUMEN

BacA is an integral membrane protein, the mutation of which leads to increased resistance to the antimicrobial peptides bleomycin and Bac7(1-35) and a greater sensitivity to SDS and vancomycin in Rhizobium leguminosarum bv. viciae, R. leguminosarum bv. phaseoli, and Rhizobium etli. The growth of Rhizobium strains on dicarboxylates as a sole carbon source was impaired in bacA mutants but was overcome by elevating the calcium level. While bacA mutants elicited indeterminate nodule formation on peas, which belong to the galegoid tribe of legumes, bacteria lysed after release from infection threads and mature bacteroids were not formed. Microarray analysis revealed almost no change in a bacA mutant of R. leguminosarum bv. viciae in free-living culture. In contrast, 45 genes were more-than 3-fold upregulated in a bacA mutant isolated from pea nodules. Almost half of these genes code for cell membrane components, suggesting that BacA is crucial to alterations that occur in the cell envelope during bacteroid development. In stark contrast, bacA mutants of R. leguminosarum bv. phaseoli and R. etli elicited the formation of normal determinate nodules on their bean host, which belongs to the phaseoloid tribe of legumes. Bacteroids from these nodules were indistinguishable from the wild type in morphology and nitrogen fixation. Thus, while bacA mutants of bacteria that infect galegoid or phaseoloid legumes have similar phenotypes in free-living culture, BacA is essential only for bacteroid development in indeterminate galegoid nodules.


Asunto(s)
Proteínas Bacterianas/fisiología , Fabaceae/microbiología , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Pruebas de Sensibilidad Microbiana , Análisis de Secuencia por Matrices de Oligonucleótidos , Pisum sativum/microbiología , Rhizobium leguminosarum/genética
20.
Curr Opin Microbiol ; 55: 40-47, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32199334

RESUMEN

Bacteria use two-component systems (TCSs) to sense and respond to their environments. Free-living bacteria usually contain dozens of TCSs, each of them responsible for sensing and responding to a different range of signals. Differences in the content of two-component systems are related with the capacity of the bacteria to colonize different niches or improve the efficiency to grow under the conditions of the existing niche. This review highlights differences in the TCS content between Staphylococcus aureus and Staphylococcus saprophyticus as a case study to exemplify how the ability to sense and respond to the environment is relevant for bacterial capacity to colonize and survive in/on different body surfaces.


Asunto(s)
Transducción de Señal/genética , Staphylococcus aureus/fisiología , Staphylococcus saprophyticus/fisiología , Animales , Proteínas Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Interacciones Huésped-Patógeno , Humanos , Infecciones Estafilocócicas/microbiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA