Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(12): e2322149121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38470925

RESUMEN

Individuals differ in where they fixate on a face, with some looking closer to the eyes while others prefer the mouth region. These individual biases are highly robust, generalize from the lab to the outside world, and have been associated with social cognition and associated disorders. However, it is unclear, whether these biases are specific to faces or influenced by domain-general mechanisms of vision. Here, we juxtaposed these hypotheses by testing whether individual face fixation biases generalize to inanimate objects. We analyzed >1.8 million fixations toward faces and objects in complex natural scenes from 405 participants tested in multiple labs. Consistent interindividual differences in fixation positions were highly inter-correlated across faces and objects in all samples. Observers who fixated closer to the eye region also fixated higher on inanimate objects and vice versa. Furthermore, the inter-individual spread of fixation positions scaled with target size in precisely the same, non-linear manner for faces and objects. These findings contradict a purely domain-specific account of individual face gaze. Instead, they suggest significant domain-general contributions to the individual way we look at faces, a finding with potential relevance for basic vision, face perception, social cognition, and associated clinical conditions.


Asunto(s)
Reconocimiento Facial , Fijación Ocular , Humanos , Individualidad , Ojo , Cara
2.
Plant Biotechnol J ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687118

RESUMEN

Mesophyll conductance (gm) describes the ease with which CO2 passes from the sub-stomatal cavities of the leaf to the primary carboxylase of photosynthesis, Rubisco. Increasing gm is suggested as a means to engineer increases in photosynthesis by increasing [CO2] at Rubisco, inhibiting oxygenation and accelerating carboxylation. Here, tobacco was transgenically up-regulated with Arabidopsis Cotton Golgi-related 3 (CGR3), a gene controlling methylesterification of pectin, as a strategy to increase CO2 diffusion across the cell wall and thereby increase gm. Across three independent events in tobacco strongly expressing AtCGR3, mesophyll cell wall thickness was decreased by 7%-13%, wall porosity increased by 75% and gm measured by carbon isotope discrimination increased by 28%. Importantly, field-grown plants showed an average 8% increase in leaf photosynthetic CO2 uptake. Up-regulating CGR3 provides a new strategy for increasing gm in dicotyledonous crops, leading to higher CO2 assimilation and a potential means to sustainable crop yield improvement.

3.
J Vis ; 24(6): 16, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38913016

RESUMEN

Humans saccade to faces in their periphery faster than to other types of objects. Previous research has highlighted the potential importance of the upper face region in this phenomenon, but it remains unclear whether this is driven by the eye region. Similarly, it remains unclear whether such rapid saccades are exclusive to faces or generalize to other semantically salient stimuli. Furthermore, it is unknown whether individuals differ in their face-specific saccadic reaction times and, if so, whether such differences could be linked to differences in face fixations during free viewing. To explore these open questions, we invited 77 participants to perform a saccadic choice task in which we contrasted faces as well as other salient objects, particularly isolated face features and text, with cars. Additionally, participants freely viewed 700 images of complex natural scenes in a separate session, which allowed us to determine the individual proportion of first fixations falling on faces. For the saccadic choice task, we found advantages for all categories of interest over cars. However, this effect was most pronounced for images of full faces. Full faces also elicited faster saccades compared with eyes, showing that isolated eye regions are not sufficient to elicit face-like responses. Additionally, we found consistent individual differences in saccadic reaction times toward faces that weakly correlated with face salience during free viewing. Our results suggest a link between semantic salience and rapid detection, but underscore the unique status of faces. Further research is needed to resolve the mechanisms underlying rapid face saccades.


Asunto(s)
Reconocimiento Facial , Individualidad , Estimulación Luminosa , Tiempo de Reacción , Movimientos Sacádicos , Humanos , Movimientos Sacádicos/fisiología , Masculino , Femenino , Tiempo de Reacción/fisiología , Adulto , Adulto Joven , Reconocimiento Facial/fisiología , Estimulación Luminosa/métodos , Fijación Ocular/fisiología , Adolescente
4.
Microb Ecol ; 85(4): 1396-1411, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35357520

RESUMEN

Plants interact with a great diversity of microorganisms or insects throughout their life cycle in the environment. Plant and insect interactions are common; besides, a great variety of microorganisms associated with insects can induce pathogenic damage in the host, as mutualist phytopathogenic fungus. However, there are other microorganisms present in the insect-fungal association, whose biological/ecological activities and functions during plant interaction are unknown. In the present work evaluated, the role of microorganisms associated with Xyleborus affinis, an important beetle species within the Xyleborini tribe, is characterized by attacking many plant species, some of which are of agricultural and forestry importance. We isolated six strains of microorganisms associated with X. affinis shown as plant growth-promoting activity and altered the root system architecture independent of auxin-signaling pathway in Arabidopsis seedlings and antifungal activity against the phytopathogenic fungus Fusarium sp. INECOL_BM-06. In addition, evaluating the tripartite interaction plant-microorganism-fungus, interestingly, we found that microorganisms can induce protection against the phytopathogenic fungus Fusarium sp. INECOL_BM-06 involving the jasmonic acid-signaling pathway and independent of salicylic acid-signaling pathway. Our results showed the important role of this microorganisms during the plant- and insect-microorganism interactions, and the biological potential use of these microorganisms as novel agents of biological control in the crops of agricultural and forestry is important.


Asunto(s)
Arabidopsis , Escarabajos , Fusarium , Gorgojos , Animales , Antifúngicos/metabolismo , Plantones/microbiología , Arabidopsis/microbiología , Gorgojos/microbiología , Insectos , Enfermedades de las Plantas/microbiología
5.
J Vis ; 23(8): 11, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37552021

RESUMEN

During natural vision, the human visual system has to process upcoming eye movements in parallel to currently fixated stimuli. Saccades targeting isolated faces are known to have lower latency and higher velocity, but it is unclear how this generalizes to the natural cycle of saccades and fixations during free-viewing of complex scenes. To which degree can the visual system process high-level features of extrafoveal stimuli when they are embedded in visual clutter and compete with concurrent foveal input? Here, we investigated how free-viewing dynamics vary as a function of an upcoming fixation target while controlling for various low-level factors. We found strong evidence that face- versus inanimate object-directed saccades are preceded by shorter fixations and have higher peak velocity. Interestingly, the boundary conditions for these two effects are dissociated. The effect on fixation duration was limited to face saccades, which were small and followed the trajectory of the preceding one, early in a trial. This is reminiscent of a recently proposed model of perisaccadic retinotopic shifts of attention. The effect on saccadic velocity, however, extended to very large saccades and increased with trial duration. These findings suggest that multiple, independent mechanisms interact to process high-level features of extrafoveal targets and modulate the dynamics of natural vision.


Asunto(s)
Fijación Ocular , Movimientos Sacádicos , Humanos , Movimientos Oculares , Atención , Memoria
6.
J Vis ; 23(2): 5, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36749582

RESUMEN

Human faces elicit faster saccades than objects or animals, resonating with the great importance of faces for our species. The underlying mechanisms are largely unclear. Here, we test two hypotheses based on previous findings. First, ultra-rapid saccades toward faces may not depend on the presence of the whole face, but the upper face region containing the eye region. Second, ultra-rapid saccades toward faces (and possibly face parts) may emerge from our extensive experience with this stimulus and thus extend to glasses and masks - artificial features frequently encountered as part of a face. To test these hypotheses, we asked 43 participants to complete a saccadic choice task, which contrasted images of whole, upper and lower faces, face masks, and glasses with car images. The resulting data confirmed ultra-rapid saccades for isolated upper face regions, but not for artificial facial features.


Asunto(s)
Reconocimiento Visual de Modelos , Movimientos Sacádicos , Animales , Humanos , Ojo
7.
J Neurosci ; 41(25): 5511-5521, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34016715

RESUMEN

The ventral visual stream of the human brain is subdivided into patches with categorical stimulus preferences, like faces or scenes. However, the functional organization within these areas is less clear. Here, we used functional magnetic resonance imaging and vertex-wise tuning models to independently probe spatial and face-part preferences in the inferior occipital gyrus (IOG) of healthy adult males and females. The majority of responses were well explained by Gaussian population tuning curves for both retinotopic location and the preferred relative position within a face. Parameter maps revealed a common gradient of spatial and face-part selectivity, with the width of tuning curves drastically increasing from posterior to anterior IOG. Tuning peaks clustered more idiosyncratically but were also correlated across maps of visual and face space. Preferences for the upper visual field went along with significantly increased coverage of the upper half of the face, matching recently discovered biases in human perception. Our findings reveal a broad range of neural face-part selectivity in IOG, ranging from narrow to "holistic." IOG is functionally organized along this gradient, which in turn is correlated with retinotopy.SIGNIFICANCE STATEMENT Brain imaging has revealed a lot about the large-scale organization of the human brain and visual system. For example, occipital cortex contains map-like representations of the visual field, while neurons in ventral areas cluster into patches with categorical preferences, like faces or scenes. Much less is known about the functional organization within these areas. Here, we focused on a well established face-preferring area-the inferior occipital gyrus (IOG). A novel neuroimaging paradigm allowed us to map the retinotopic and face-part tuning of many recording sites in IOG independently. We found a steep posterior-anterior gradient of decreasing face-part selectivity, which correlated with retinotopy. This suggests the functional role of ventral areas is not uniform and may follow retinotopic "protomaps."


Asunto(s)
Reconocimiento Facial/fisiología , Lóbulo Occipital/fisiología , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vías Visuales/fisiología
8.
Neuroimage ; 263: 119557, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35970472

RESUMEN

Data binning involves grouping observations into bins and calculating bin-wise summary statistics. It can cope with overplotting and noise, making it a versatile tool for comparing many observations. However, data binning goes awry if the same observations are used for binning (selection) and contrasting (selective analysis). This creates circularity, biasing noise components and resulting in artifactual changes in the form of regression towards the mean. Importantly, these artifactual changes are a statistical necessity. Here, we use (null) simulations and empirical repeat data to expose this flaw in the scope of post hoc analyses of population receptive field data. In doing so, we reveal that the type of data analysis, data properties, and circular data cleaning are factors shaping the appearance of such artifactual changes. We furthermore highlight that circular data cleaning and circular sorting of change scores are selection practices that result in artifactual changes even without circular data binning. These pitfalls might have led to erroneous claims about changes in population receptive fields in previous work and can be mitigated by using independent data for selection purposes. Our evaluations highlight the urgency for us researchers to make the validation of analysis pipelines standard practice.


Asunto(s)
Análisis de Datos
9.
Proc Natl Acad Sci U S A ; 116(24): 11687-11692, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31138705

RESUMEN

What determines where we look? Theories of attentional guidance hold that image features and task demands govern fixation behavior, while differences between observers are interpreted as a "noise-ceiling" that strictly limits predictability of fixations. However, recent twin studies suggest a genetic basis of gaze-trace similarity for a given stimulus. This leads to the question of how individuals differ in their gaze behavior and what may explain these differences. Here, we investigated the fixations of >100 human adults freely viewing a large set of complex scenes containing thousands of semantically annotated objects. We found systematic individual differences in fixation frequencies along six semantic stimulus dimensions. These differences were large (>twofold) and highly stable across images and time. Surprisingly, they also held for first fixations directed toward each image, commonly interpreted as "bottom-up" visual salience. Their perceptual relevance was documented by a correlation between individual face salience and face recognition skills. The set of reliable individual salience dimensions and their covariance pattern replicated across samples from three different countries, suggesting they reflect fundamental biological mechanisms of attention. Our findings show stable individual differences in salience along a set of fundamental semantic dimensions and that these differences have meaningful perceptual implications. Visual salience reflects features of the observer as well as the image.


Asunto(s)
Fijación Ocular/fisiología , Reconocimiento Visual de Modelos/fisiología , Percepción Visual/fisiología , Adulto , Atención/fisiología , Movimientos Oculares/fisiología , Cara/fisiología , Reconocimiento Facial/fisiología , Femenino , Humanos , Individualidad , Masculino , Estimulación Luminosa/métodos , Semántica
10.
J Vis ; 22(12): 9, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342691

RESUMEN

Individuals freely viewing complex scenes vary in their fixation behavior. The most prominent and reliable dimension of such individual differences is the tendency to fixate faces. However, much less is known about how observers distribute fixations across other body parts of persons in scenes and how individuals may vary in this regard. Here, we aimed to close this gap. We expanded a popular annotated stimulus set (Xu, Jiang, Wang, Kankanhalli, & Zhao, 2014) with 6,365 hand-delineated pixel masks for the body parts of 1,136 persons embedded in 700 complex scenes, which we publish with this article (https://osf.io/ynujz/). This resource allowed us to analyze the person-directed fixations of 103 participants freely viewing these scenes. We found large and reliable individual differences in the distribution of fixations across person features. Individual fixation tendencies formed two anticorrelated clusters, one for the eyes, head, and the inner face and one for body features (torsi, arms, legs, and hands). Interestingly, the tendency to fixate mouths was independent of the face cluster. Finally, our results show that observers who tend to avoid person fixations in general, particularly do so for the face region. These findings underscore the role of individual differences in fixation behavior and reveal underlying dimensions. They are further in line with a recently proposed push-pull relationship between cortical tuning for faces and bodies. They may also aid the comparison of special populations to general variation.


Asunto(s)
Fijación Ocular , Individualidad , Humanos , Atención , Movimientos Oculares , Cara
11.
J Vis ; 22(8): 17, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35900724

RESUMEN

Neurotypical observers show large and reliable individual differences in gaze behavior along several semantic object dimensions. Individual gaze behavior toward faces has been linked to face identity processing, including that of neurotypical observers. Here, we investigated potential gaze biases in Super-Recognizers (SRs), individuals with exceptional face identity processing skills. Ten SRs, identified with a novel conservative diagnostic framework, and 43 controls freely viewed 700 complex scenes depicting more than 5000 objects. First, we tested whether SRs and controls differ in fixation biases along four semantic dimensions: faces, text, objects being touched, and bodies. Second, we tested potential group differences in fixation biases toward eyes and mouths. Finally, we tested whether SRs fixate closer to the theoretical optimal fixation point for face identification. SRs showed a stronger gaze bias toward faces and away from text and touched objects, starting from the first fixation onward. Further, SRs spent a significantly smaller proportion of first fixations and dwell time toward faces on mouths but did not differ in dwell time or first fixations devoted to eyes. Face fixation of SRs also fell significantly closer to the theoretical optimal fixation point for identification, just below the eyes. Our findings suggest that reliable superiority for face identity processing is accompanied by early fixation biases toward faces and preferred saccadic landing positions close to the theoretical optimum for face identification. We discuss future directions to investigate the functional basis of individual fixation behavior and face identity processing ability.


Asunto(s)
Cara , Reconocimiento Facial , Sesgo , Fijación Ocular , Humanos , Movimientos Sacádicos , Semántica
12.
Neuroimage ; 239: 118286, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34153449

RESUMEN

How much of the functional organization of our visual system is inherited? Here we tested the heritability of retinotopic maps in human visual cortex using functional magnetic resonance imaging. We demonstrate that retinotopic organization shows a closer correspondence in monozygotic (MZ) compared to dizygotic (DZ) twin pairs, suggesting a partial genetic determination. Using population receptive field (pRF) analysis to examine the preferred spatial location and selectivity of these neuronal populations, we estimate a heritability around 10-20% for polar angle preferences and spatial selectivity, as quantified by pRF size, in extrastriate areas V2 and V3. Our findings are consistent with heritability in both the macroscopic arrangement of visual regions and stimulus tuning properties of visual cortex. This could constitute a neural substrate for variations in a range of perceptual effects, which themselves have been found to be at least partially genetically determined. These findings also add convergent evidence for the hypothesis that functional map topology is linked with cortical morphology.


Asunto(s)
Carácter Cuantitativo Heredable , Corteza Visual/anatomía & histología , Campos Visuales/genética , Adolescente , Adulto , Variación Biológica Individual , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estimulación Luminosa , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética , Corteza Visual/fisiología , Adulto Joven
13.
J Vis ; 20(9): 13, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32945849

RESUMEN

Recent findings revealed consistent individual differences in fixation tendencies among observers free-viewing complex scenes. The present study aimed at (1) replicating these differences, and (2) testing whether they can be estimated using a shorter test. In total, 103 participants completed two eye-tracking sessions. The first session was a direct replication of the original study, but the second session used a smaller subset of images, optimized to capture individual differences efficiently. The first session replicated the large and consistent individual differences along five semantic dimensions observed in the original study. The second session showed that these differences can be estimated using about 40 to 100 images (depending on the tested dimension). Additional analyses revealed that only the first 2 seconds of viewing duration seem to be informative regarding these differences. Taken together, our findings suggest that reliable individual differences in semantic salience can be estimated with a test totaling less than 2 minutes of viewing duration.


Asunto(s)
Fijación Ocular/fisiología , Percepción Visual/fisiología , Adulto , Atención , Tecnología de Seguimiento Ocular , Femenino , Humanos , Masculino , Semántica , Adulto Joven
14.
Neuroimage ; 197: 273-283, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31051294

RESUMEN

Motor imagery (MI) is the process in which subjects imagine executing a body movement with a strong kinesthetic component from a first-person perspective. The individual capacity to elicit such mental images is not universal but varies within and between subjects. Neuroimaging studies have shown that these inter-as well as intra-individual differences in imagery quality mediate the amplitude of neural activity during MI on a group level. However, these analyses were not sensitive to forms of representation that may not map onto a simple modulation of overall amplitude. Therefore, the present study asked how far the subjective impression of motor imagery vividness is reflected by a spatial neural code, and how patterns of neural activation in different motor regions relate to specific imagery impressions. During fMRI scanning, 20 volunteers imagined three different types of right-hand actions. After each imagery trial, subjects were asked to evaluate the perceived vividness of their imagery. A correlation analysis compared the rating differences and neural dissimilarity values of the rating groups separately for each region of interest. Results showed a significant positive correlation in the left vPMC and right IPL, indicating that these regions particularly reflect perceived imagery vividness in that similar rated trials evoke more similar neural patterns. A decoding analysis revealed that the vividness of the motor image related systematically to the action specificity of neural activation patterns in left vPMC and right SPL. Imagined actions accompanied by higher vividness ratings were significantly more distinguishable within these areas. Altogether, results showed that spatial patterns of neural activity within the human motor cortices reflect the individual vividness of imagined actions. Hence, the findings reveal a link between the subjective impression of motor imagery vividness and objective physiological markers.


Asunto(s)
Imaginación/fisiología , Cinestesia/fisiología , Corteza Motora/fisiología , Movimiento , Lóbulo Parietal/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Individualidad , Imagen por Resonancia Magnética , Masculino , Desempeño Psicomotor , Adulto Joven
15.
Hum Brain Mapp ; 40(18): 5172-5184, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31430005

RESUMEN

Exploring an object's shape by touch also renders information about its surface roughness. It has been suggested that shape and roughness are processed distinctly in the brain, a result based on comparing brain activation when exploring objects that differed in one of these features. To investigate the neural mechanisms of top-down control on haptic perception of shape and roughness, we presented the same multidimensional objects but varied the relevance of each feature. Specifically, participants explored two objects that varied in shape (oblongness of cuboids) and surface roughness. They either had to compare the shape or the roughness in an alternative-forced-choice-task. Moreover, we examined whether the activation strength of the identified brain regions as measured by functional magnetic resonance imaging (fMRI) can predict the behavioral performance in the haptic discrimination task. We observed a widespread network of activation for shape and roughness perception comprising bilateral precentral and postcentral gyrus, cerebellum, and insula. Task-relevance of the object's shape increased activation in the right supramarginal gyrus (SMG/BA 40) and the right precentral gyrus (PreCG/BA 44) suggesting that activation in these areas does not merely reflect stimulus-driven processes, such as exploring shape, but also entails top-down controlled processes driven by task-relevance. Moreover, the strength of the SMG/PreCG activation predicted individual performance in the shape but not in the roughness discrimination task. No activation was found for the reversed contrast (roughness > shape). We conclude that macrogeometric properties, such as shape, can be modulated by top-down mechanisms whereas roughness, a microgeometric feature, seems to be processed automatically.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conducta Exploratoria/fisiología , Imagen por Resonancia Magnética/métodos , Percepción del Tacto/fisiología , Adulto , Aprendizaje Discriminativo/fisiología , Femenino , Humanos , Masculino , Distribución Aleatoria , Adulto Joven
16.
BMC Genomics ; 19(1): 721, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30285612

RESUMEN

BACKGROUND: The Ambrosia Fusarium Clade phytopathogenic Fusarium fungi species have a symbiotic relationship with ambrosia beetles in the genus Euwallacea (Coleoptera: Curculionidae). Related beetle species referred to as Euwallacea sp. near fornicatus have been spread in California, USA and are recognized as the causal agents of Fusarium dieback, a disease that causes mortality of many plant species. Despite the importance of this fungi, no transcriptomic resources have been generated. The datasets described here represent the first ever transcripts available for these species. We focused our study on the isolated species of Fusarium that is associated with one of the cryptic species referred to as Kuroshio Shot Hole Borer (KSHB) Euwallacea sp. near fornicatus. RESULTS: Hydrogen concentration is a critical signal in fungi for growth and host colonization, the aim of this study was to evaluate the effect of different pH conditions on growth and gene expression of the fungus Fusarium sp. associated with KSHB. An RNA-seq approach was used to compare the gene expression of the fungus grown for 2 weeks in liquid medium at three different pH levels (5.0, 6.0, and 7.0). An unbuffered treatment was included to evaluate the capability of the fungus to change the pH of its environment and the impact in gene expression. The results showed that the fungus can grow and modulate its genetic expression at different pH conditions; however, growth was stunted in acidic pH in comparison with neutral pH. The results showed a differential expression pattern in each pH condition even when acidic conditions prevailed at the end of the experiment. After comparing transcriptomics data from the three treatments, we found a total of 4,943 unique transcripts that were differentially expressed. CONCLUSIONS: We identified transcripts related to pH signaling such as the conserved PAL/RIM pathway, some transcripts related to secondary metabolism and other transcripts that were differentially expressed. Our analysis suggests possible mechanisms involved in pathogenicity in this novel Fusarium species. This is the first report that shows transcriptomic data of this pathogen as well as the first report of genes and proteins involved in their metabolism identifying potential virulence factors.


Asunto(s)
Ambiente , Fusarium/genética , Fusarium/fisiología , Perfilación de la Expresión Génica , Gorgojos/microbiología , Animales , Ácido Fusárico/biosíntesis , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Concentración de Iones de Hidrógeno , Anotación de Secuencia Molecular , Filogenia , Homología de Secuencia de Ácido Nucleico , Simbiosis
17.
Cereb Cortex ; 27(9): 4523-4536, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27600847

RESUMEN

Simulation theory proposes motor imagery (MI) to be a simulation based on representations also used for motor execution (ME). Nonetheless, it is unclear how far they use the same neural code. We use multivariate pattern analysis (MVPA) and representational similarity analysis (RSA) to describe the neural representations associated with MI and ME within the frontoparietal motor network. During functional magnetic resonance imaging scanning, 20 volunteers imagined or executed 3 different types of right-hand actions. Results of MVPA showed that these actions as well as their modality (MI or ME) could be decoded significantly above chance from the spatial patterns of BOLD signals in premotor and posterior parietal cortices. This was also true for cross-modal decoding. Furthermore, representational dissimilarity matrices of frontal and parietal areas showed that MI and ME representations formed separate clusters, but that the representational organization of action types within these clusters was identical. For most ROIs, this pattern of results best fits with a model that assumes a low-to-moderate degree of similarity between the neural patterns associated with MI and ME. Thus, neural representations of MI and ME are neither the same nor totally distinct but exhibit a similar structural geometry with respect to different types of action.


Asunto(s)
Imaginación/fisiología , Movimiento/fisiología , Lóbulo Parietal/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imágenes en Psicoterapia/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Desempeño Psicomotor/fisiología , Adulto Joven
18.
J Vis ; 18(4): 16, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29710306

RESUMEN

Face perception is impaired for inverted images, and a prominent example of this is the Thatcher illusion: "Thatcherized" (i.e., rotated) eyes and mouths make a face look grotesque, but only if the whole face is seen upright rather than inverted. Inversion effects are often interpreted as evidence for configural face processing. However, recent findings have led to the alternative proposal that the Thatcher illusion rests on orientation sensitivity for isolated facial regions. Here, we tested whether the Thatcher effect depends not only on the orientation of facial regions but also on their visual-field location. Using a match-to-sample task with isolated eye and mouth regions we found a significant Feature × Location interaction. Observers were better at discriminating Thatcherized from normal eyes in the upper compared to the lower visual field, and vice versa for mouths. These results show that inversion effects can at least partly be driven by nonconfigural factors and that one of these factors is a match between facial features and their typical visual-field location. This echoes recent results showing feature-location effects in face individuation. We discuss the role of these findings for the hypothesis that spatial and feature tuning in the ventral stream are linked.


Asunto(s)
Reconocimiento Facial/fisiología , Ilusiones/fisiología , Reconocimiento Visual de Modelos/fisiología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Orientación Espacial , Campos Visuales/fisiología , Adulto Joven
19.
J Neurosci ; 36(36): 9289-302, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27605606

RESUMEN

UNLABELLED: Faces are salient social stimuli whose features attract a stereotypical pattern of fixations. The implications of this gaze behavior for perception and brain activity are largely unknown. Here, we characterize and quantify a retinotopic bias implied by typical gaze behavior toward faces, which leads to eyes and mouth appearing most often in the upper and lower visual field, respectively. We found that the adult human visual system is tuned to these contingencies. In two recognition experiments, recognition performance for isolated face parts was better when they were presented at typical, rather than reversed, visual field locations. The recognition cost of reversed locations was equal to ∼60% of that for whole face inversion in the same sample. Similarly, an fMRI experiment showed that patterns of activity evoked by eye and mouth stimuli in the right inferior occipital gyrus could be separated with significantly higher accuracy when these features were presented at typical, rather than reversed, visual field locations. Our findings demonstrate that human face perception is determined not only by the local position of features within a face context, but by whether features appear at the typical retinotopic location given normal gaze behavior. Such location sensitivity may reflect fine-tuning of category-specific visual processing to retinal input statistics. Our findings further suggest that retinotopic heterogeneity might play a role for face inversion effects and for the understanding of conditions affecting gaze behavior toward faces, such as autism spectrum disorders and congenital prosopagnosia. SIGNIFICANCE STATEMENT: Faces attract our attention and trigger stereotypical patterns of visual fixations, concentrating on inner features, like eyes and mouth. Here we show that the visual system represents face features better when they are shown at retinal positions where they typically fall during natural vision. When facial features were shown at typical (rather than reversed) visual field locations, they were discriminated better by humans and could be decoded with higher accuracy from brain activity patterns in the right occipital face area. This suggests that brain representations of face features do not cover the visual field uniformly. It may help us understand the well-known face-inversion effect and conditions affecting gaze behavior toward faces, such as prosopagnosia and autism spectrum disorders.


Asunto(s)
Atención/fisiología , Cara , Lóbulo Occipital/fisiología , Reconocimiento Visual de Modelos/fisiología , Reconocimiento en Psicología/fisiología , Adulto , Femenino , Fijación Ocular , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Lóbulo Occipital/diagnóstico por imagen , Oxígeno/sangre , Estimulación Luminosa , Adulto Joven
20.
Plant Cell Environ ; 40(11): 2706-2719, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28732146

RESUMEN

Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone.


Asunto(s)
Medicago truncatula/enzimología , Medicago truncatula/microbiología , Proteínas de Plantas/metabolismo , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/enzimología , Zinc/metabolismo , Diferenciación Celular , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Medicago truncatula/genética , Modelos Biológicos , Fenotipo , Proteínas de Plantas/genética , Interferencia de ARN , Nódulos de las Raíces de las Plantas/genética , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA