Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 620(7974): 582-588, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37558875

RESUMEN

Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.


Asunto(s)
Biodiversidad , Conservación de los Recursos Hídricos , Monitoreo del Ambiente , Agua Dulce , Invertebrados , Animales , Especies Introducidas/tendencias , Invertebrados/clasificación , Invertebrados/fisiología , Europa (Continente) , Actividades Humanas , Conservación de los Recursos Hídricos/estadística & datos numéricos , Conservación de los Recursos Hídricos/tendencias , Hidrobiología , Factores de Tiempo , Producción de Cultivos , Urbanización , Calentamiento Global , Contaminantes del Agua/análisis
2.
Ecol Lett ; 25(2): 255-263, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34854211

RESUMEN

Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Biodiversidad , Agua Dulce
3.
Glob Chang Biol ; 28(12): 3754-3777, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35098624

RESUMEN

Biodiversity conservation faces a methodological conundrum: Biodiversity measurement often relies on species, most of which are rare at various scales, especially prone to extinction under global change, but also the most challenging to sample and model. Predicting the distribution change of rare species using conventional species distribution models is challenging because rare species are hardly captured by most survey systems. When enough data are available, predictions are usually spatially biased towards locations where the species is most likely to occur, violating the assumptions of many modelling frameworks. Workflows to predict and eventually map rare species distributions imply important trade-offs between data quantity, quality, representativeness and model complexity that need to be considered prior to survey and analysis. Our opinion is that study designs need to carefully integrate the different steps, from species sampling to modelling, in accordance with the different types of rarity and available data in order to improve our capacity for sound assessment and prediction of rare species distribution. In this article, we summarize and comment on how different categories of species rarity lead to different types of occurrence and distribution data depending on choices made during the survey process, namely the spatial distribution of samples (where to sample) and the sampling protocol in each selected location (how to sample). We then clarify which species distribution models are suitable depending on the different types of distribution data (how to model). Among others, for most rarity forms, we highlight the insights from systematic species-targeted sampling coupled with hierarchical models that allow correcting for overdispersion and spatial and sampling sources of bias. Our article provides scientists and practitioners with a much-needed guide through the ever-increasing diversity of methodological developments to improve the prediction of rare species distribution depending on rarity type and available data.


Asunto(s)
Biodiversidad
4.
Glob Chang Biol ; 28(15): 4620-4632, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35570183

RESUMEN

Globalization has led to the introduction of thousands of alien species worldwide. With growing impacts by invasive species, understanding the invasion process remains critical for predicting adverse effects and informing efficient management. Theoretically, invasion dynamics have been assumed to follow an "invasion curve" (S-shaped curve of available area invaded over time), but this dynamic has lacked empirical testing using large-scale data and neglects to consider invader abundances. We propose an "impact curve" describing the impacts generated by invasive species over time based on cumulative abundances. To test this curve's large-scale applicability, we used the data-rich New Zealand mud snail Potamopyrgus antipodarum, one of the most damaging freshwater invaders that has invaded almost all of Europe. Using long-term (1979-2020) abundance and environmental data collected across 306 European sites, we observed that P. antipodarum abundance generally increased through time, with slower population growth at higher latitudes and with lower runoff depth. Fifty-nine percent of these populations followed the impact curve, characterized by first occurrence, exponential growth, then long-term saturation. This behaviour is consistent with boom-bust dynamics, as saturation occurs due to a rapid decline in abundance over time. Across sites, we estimated that impact peaked approximately two decades after first detection, but the rate of progression along the invasion process was influenced by local abiotic conditions. The S-shaped impact curve may be common among many invasive species that undergo complex invasion dynamics. This provides a potentially unifying approach to advance understanding of large-scale invasion dynamics and could inform timely management actions to mitigate impacts on ecosystems and economies.


Asunto(s)
Ecosistema , Especies Introducidas , Animales , Europa (Continente) , Nueva Zelanda , Caracoles
5.
Glob Chang Biol ; 27(3): 606-623, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33159701

RESUMEN

Non-native species introductions affect freshwater communities by changing community compositions, functional roles, trait occurrences and ecological niche spaces. Reconstructing such changes over long periods is difficult due to limited data availability. We collected information spanning 215 years on fish and selected macroinvertebrate groups (Mollusca and Crustacea) in the inner-Florentine stretch of the Arno River (Italy) and associated water grid, to investigate temporal changes. We identified an almost complete turnover from native to non-native fish (1800: 92% native; 2015: 94% non-native species) and macroinvertebrate species (1800: 100% native; 2015: 70% non-native species). Non-native fish species were observed ~50 years earlier compared to macroinvertebrate species, indicating phased invasion processes. In contrast, α-diversity of both communities increased significantly following a linear pattern. Separate analyses of changes in α-diversities for native and non-native species of both fish and macroinvertebrates were nonlinear. Functional richness and divergence of fish and macroinvertebrate communities decreased non-significantly, as the loss of native species was compensated by non-native species. Introductions of non-native fish and macroinvertebrate species occurred outside the niche space of native species. Native and non-native fish species exhibited greater overlap in niche space over time (62%-68%) and non-native species eventually replaced native species. Native and non-native macroinvertebrate niches overlapped to a lesser extent (15%-30%), with non-natives occupying mostly unoccupied niche space. These temporal changes in niche spaces of both biotic groups are a direct response to the observed changes in α-diversity and species turnover. These changes are potentially driven by deteriorations in hydromorphology as indicated by alterations in trait modalities. Additionally, we identified that angling played a considerable role for fish introductions. Our results support previous findings that the community turnover from native to non-native species can be facilitated by, for example, deteriorating environmental conditions and that variations in communities are multifaceted requiring more indicators than single metrics.


Asunto(s)
Ecosistema , Especies Introducidas , Animales , Biodiversidad , Peces , Invertebrados , Italia , Ríos
6.
Conserv Biol ; 34(5): 1241-1251, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32022305

RESUMEN

The ongoing biodiversity crisis becomes evident in the widely observed decline in abundance and diversity of species, profound changes in community structure, and shifts in species' phenology. Insects are among the most affected groups, with documented decreases in abundance up to 76% in the last 25-30 years in some terrestrial ecosystems. Identifying the underlying drivers is a major obstacle as most ecosystems are affected by multiple stressors simultaneously and in situ measurements of environmental variables are often missing. In our study, we investigated a headwater stream belonging to the most common stream type in Germany located in a nature reserve with no major anthropogenic impacts except climate change. We used the most comprehensive quantitative long-term data set on aquatic insects available, which includes weekly measurements of species-level insect abundance, daily water temperature and stream discharge as well as measurements of additional physicochemical variables for a 42-year period (1969-2010). Overall, water temperature increased by 1.88 °C and discharge patterns changed significantly. These changes were accompanied by an 81.6% decline in insect abundance, but an increase in richness (+8.5%), Shannon diversity (+22.7%), evenness (+22.4%), and interannual turnover (+34%). Moreover, the community's trophic structure and phenology changed: the duration of emergence increased by 15.2 days, whereas the peak of emergence moved 13.4 days earlier. Additionally, we observed short-term fluctuations (<5 years) in almost all metrics as well as complex and nonlinear responses of the community toward climate change that would have been missed by simply using snapshot data or shorter time series. Our results indicate that climate change has already altered biotic communities severely even in protected areas, where no other interacting stressors (pollution, habitat fragmentation, etc.) are present. This is a striking example of the scientific value of comprehensive long-term data in capturing the complex responses of communities toward climate change.


Cambios Complejos y No Lineales Causados por el Clima en Comunidades de Insectos de Agua Dulce durante 42 Años Resumen La continua crisis de la biodiversidad se vuelve evidente en la ampliamente documentada declinación en la abundancia y diversidad de especies, cambios profundos en la estructura de las comunidades y modificaciones en la fenología de las especies. Los insectos se encuentran entre los grupos más afectados; se han documentado reducciones en la abundancia de hasta el 76% en los últimos 25-30 años en algunos ecosistemas terrestres. La identificación de los causantes subyacentes es un gran obstáculo porque la mayoría de los ecosistemas están afectados por varios factores estresantes simultáneamente y con frecuencia faltan las medidas in situ de las variables ambientales. Investigamos un flujo naciente perteneciente al tipo de arroyo más común en Alemania ubicado dentro de una reserva natural sin impactos antropogénicos importantes a excepción del cambio climático. Usamos el conjunto más completo disponible de datos cuantitativos de largo plazo para insectos acuáticos que incluye las medidas semanales de abundancia de insectos a nivel especie, las medidas diarias de la temperatura del agua y la descarga del flujo y las medidas de variables físico-químicas adicionales durante 42 años (1969 - 2010). En general, la temperatura del agua incrementó 1.88°C y los patrones de descarga cambiaron significativamente. Estos cambios estuvieron acompañados por una declinación del 81.6% en la abundancia de insectos, pero también de un incremento en la riqueza (+8.5%), la diversidad Shannon (+22.7%), la uniformidad (+22.4%) y la renovación interanual (+34%). Además, la estructura trófica y la fenología de la comunidad cambiaron: la duración del surgimiento incrementó en 15.2 días y el pico del surgimiento ocurrió con 13.4 días de anticipación. Observamos fluctuaciones a corto plazo (<5 años) en casi todas las medidas, así como respuestas complejas y no lineales de la comunidad hacia el cambio climático que podrían haber sido ignoradas si sólo se usaran datos instantáneos o series de tiempo más cortas. Nuestros resultados indican que el cambio climático ya ha alterado seriamente a las comunidades bióticas, incluso en áreas protegidas en las que no están presentes otros factores estresantes en interacción (contaminación, fragmentación del hábitat, etc.). Ésto es un ejemplo notable del valor científico que tienen los datos completos de escalas de tiempo a largo plazo para la captura de las respuestas complejas de las comunidades ante el cambio climático.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Biodiversidad , Cambio Climático , Agua Dulce , Alemania , Insectos
7.
J Anim Ecol ; 88(10): 1498-1509, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31264217

RESUMEN

Rising global temperatures force many species to shift their distribution ranges. However, whether or not (and how fast) such range shifts occur depends on species' dispersal capacities. In most ecological studies, dispersal-related traits (such as the wing size or wing loading in insects) are treated as fixed, species-specific characteristics, ignoring the important role of phenotypic plasticity during insect development. We tested the hypothesis that dispersal-related traits themselves vary in dependence of ambient environmental conditions (temperature regimes, discharge patterns and biotic interactions during individual development). We collected data over 8 years from a natural population of the crane fly Tipula maxima in central Germany. Using linear mixed-effect models, we analysed how phenotypic traits, phenological characteristics and population densities are affected by environmental conditions during the preceding 3, 6 and 12 months. We found a moderate (5.6%) increase in wing length per 1°C increase in mean annual temperatures during the previous year. At the same time, body weight increased by as much as 17.8% in females and 26.9% in males per 1°C, likely driven by increased habitat productivity, which resulted in a 16.4% (female) and 19.3% (male) increased wing loading. We further found a shorter, more synchronized emergence period (i.e. a narrower time frame for dispersal) with increasing temperatures. Altogether, our results suggest that dispersal abilities of T. maxima were negatively affected by elevated temperatures, and we discuss how similar patterns might affect the persistence of populations of other aquatic insects, especially stenoecious taxa with narrow distribution ranges. Our study calls for integration of information on temperature-induced phenotypic plasticity of dispersal-related traits into models forecasting range shifts in the face of climate change. Furthermore, the patterns reported here are likely to affect metapopulation dynamics of aquatic insects under climate change conditions and may contribute to the ongoing decline of insect biomass and diversity.


Asunto(s)
Cambio Climático , Insectos , Animales , Ecosistema , Femenino , Alemania , Masculino , Temperatura , Alas de Animales
8.
Conserv Biol ; 33(1): 132-141, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29947087

RESUMEN

Although experiences with ecological restoration continue to accumulate, the effectiveness of restoration for biota remains debated. We complemented a traditional taxonomic analysis approach with information on 56 species traits to uncover the responses of 3 aquatic (fish, macroinvertebrates, macrophytes) and 2 terrestrial (carabid beetles, floodplain vegetation) biotic groups to 43 hydromorphological river restoration projects in Germany. All taxonomic groups responded positively to restoration, as shown by increased taxonomic richness (10-164%) and trait diversity (habitat, dispersal and mobility, size, form, life history, and feeding groups) (15-120%). Responses, however, were stronger for terrestrial than aquatic biota, and, contrary to our expectation, taxonomic responses were stronger than those of traits. Nevertheless, trait analysis provided mechanistic insights into the drivers of community change following restoration. Trait analysis for terrestrial biota indicated restoration success was likely enhanced by lateral connectivity and reestablishment of dynamic processes in the floodplain. The weaker response of aquatic biota suggests recovery was hindered by the persistence of stressors in the aquatic environment, such as degraded water quality, dispersal constraints, and insufficient hydromorphological change. Therefore, river restoration requires combined local- and regional-scale approaches to maximize the response of both aquatic and terrestrial organisms. Due to the contrasting responses of aquatic and terrestrial biota, the planning and assessment of river restoration outcomes should consider effects on both components of riverine landscapes.


Asunto(s)
Conservación de los Recursos Naturales , Ríos , Animales , Ecosistema , Peces , Alemania
9.
J Environ Manage ; 250: 109487, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31545175

RESUMEN

The feasibility of wellhead water treatment in small communities for nitrate removal and salinity reduction via a flexible high recovery RO system was evaluated through analysis of treatment options, laboratory and onsite field tests. In small remote communities that rely on septic systems for residential wastewater treatment, discharge of the RO residual stream (containing nitrate) to the community septic tank is shown to be a feasible option. It is demonstrated that RO treatment with a system that employs partial concentrate recycle, integrated with a pressure intensifier, enabled the use of a relatively low-pressure feed pump while allowing high recovery operation. The approach of integrating RO treatment into existing community small water systems is demonstrated to be suitable for providing effective nitrate removal and salinity reduction over wide range of nitrate and salinity levels, while meeting community water demand and regulatory water quality requirements.


Asunto(s)
Salinidad , Purificación del Agua , Estudios de Factibilidad , Ósmosis , Eliminación de Residuos Líquidos , Aguas Residuales
10.
J Environ Manage ; 250: 109479, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31499467

RESUMEN

Distributed environmental research infrastructures are important to support assessments of the effects of global change on landscapes, ecosystems and society. These infrastructures need to provide continuity to address long-term change, yet be flexible enough to respond to rapid societal and technological developments that modify research priorities. We used a horizon scanning exercise to identify and prioritize emerging research questions for the future development of ecosystem and socio-ecological research infrastructures in Europe. Twenty research questions covered topics related to (i) ecosystem structures and processes, (ii) the impacts of anthropogenic drivers on ecosystems, (iii) ecosystem services and socio-ecological systems and (iv), methods and research infrastructures. Several key priorities for the development of research infrastructures emerged. Addressing complex environmental issues requires the adoption of a whole-system approach, achieved through integration of biotic, abiotic and socio-economic measurements. Interoperability among different research infrastructures needs to be improved by developing standard measurements, harmonizing methods, and establishing capacities and tools for data integration, processing, storage and analysis. Future research infrastructures should support a range of methodological approaches including observation, experiments and modelling. They should also have flexibility to respond to new requirements, for example by adjusting the spatio-temporal design of measurements. When new methods are introduced, compatibility with important long-term data series must be ensured. Finally, indicators, tools, and transdisciplinary approaches to identify, quantify and value ecosystem services across spatial scales and domains need to be advanced.


Asunto(s)
Ecología , Ecosistema , Europa (Continente)
11.
Proc Biol Sci ; 284(1863)2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28931734

RESUMEN

Identifying patterns in the effects of temperature on species' population abundances could help develop a general framework for predicting the consequences of climate change across different communities and realms. We used long-term population time series data from terrestrial, freshwater, and marine species communities within central Europe to compare the effects of temperature on abundance across a broad range of taxonomic groups. We asked whether there was an average relationship between temperatures in different seasons and annual abundances of species in a community, and whether species attributes (temperature range of distribution, range size, habitat breadth, dispersal ability, body size, and lifespan) explained interspecific variation in the relationship between temperature and abundance. We found that, on average, warmer winter temperatures were associated with greater abundances in terrestrial communities (ground beetles, spiders, and birds) but not always in aquatic communities (freshwater and marine invertebrates and fish). The abundances of species with large geographical ranges, larger body sizes, and longer lifespans tended to be less related to temperature. Our results suggest that climate change may have, in general, positive effects on species' abundances within many terrestrial communities in central Europe while the effects are less predictable in aquatic communities.


Asunto(s)
Biodiversidad , Cambio Climático , Ecosistema , Temperatura , Distribución Animal , Animales , Tamaño Corporal , Europa (Continente) , Longevidad , Dinámica Poblacional , Estaciones del Año
12.
Conserv Biol ; 31(5): 1098-1108, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28218807

RESUMEN

Understanding restoration effectiveness is often impaired by a lack of high-quality, long-term monitoring data and, to date, few researchers have used species' trait information to gain insight into the processes that drive the reaction of fish communities to restoration. We examined fish-community responses with a highly resolved data set from 21 consecutive years of electrofishing (4 years prerestoration and 17 years postrestoration) at multiple restored and unrestored reaches from a river restoration project on the Lippe River, Germany. Fish abundance peaked in the third year after the restoration; abundance was 6 times higher than before the restoration. After 5-7 years, species richness and abundance stabilized at 2 and 3.5 times higher levels relative to the prerestoration level, respectively. However, interannual variability of species richness and abundance remained considerable, illustrating the challenge of reliably assessing restoration outcomes based on data from individual samplings, especially in the first years following restoration. Life-history and reproduction-related traits best explained differences in species' responses to restoration. Opportunistic short-lived species with early female maturity and multiple spawning runs per year exhibited the strongest increase in abundance, which reflected their ability to rapidly colonize new habitats. These often small-bodied and fusiform fishes typically live in dynamic and ephemeral instream and floodplain areas that river-habitat restorations often aim to create, and in this case their increases in abundance indicated successful restoration. Our results suggest that a greater consideration of species' traits may enhance the causal understanding of community processes and the coupling of restoration to functional ecology. Trait-based assessments of restoration outcomes would furthermore allow for easier transfer of knowledge across biogeographic borders than studies based on taxonomy.


Asunto(s)
Conservación de los Recursos Naturales , Peces , Animales , Ecosistema , Femenino , Alemania , Reproducción , Ríos
13.
Materials (Basel) ; 17(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38473636

RESUMEN

Driven by climate change and the need for a more sustainable construction sector, policy is increasingly demanding and promoting timber hybrid construction methods. In the German state of Baden-Württemberg, every new public building has to be of timber or timber hybrid construction (Holzbauoffensive BW). The objective of multi-story buildings with large floor spans can only be achieved in a resource-efficient way by hybrid constructions combining timber and steel components. A research project recently completed at the Karlsruhe Institute of Technology was aimed at the development and systematic investigation of hybrid bending beams in which an advantageous combination of the materials steel and timber is used. For this purpose, steel profiles are integrated into timber cross-sections in a shear-resistant manner by adhesive bonding. As part of the experimental, numerical and analytical investigations, different cross-sections of steel and timber, as well as different construction materials, were considered (GL24h, LVL48p, LVL80p, S355 and S420). The results of large-scale four-point bending tests illustrate the potential of this new hybrid construction method. Depending on the geometry and material combinations tested, the bending stiffness could be increased by up to 250%, and the load-carrying capacity by up to 120%, compared to a glulam beam with identical dimensions.

14.
Sci Total Environ ; 929: 172665, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38653408

RESUMEN

Biotic communities often respond poorly to river restoration activities and the drivers of community recovery after restoration are not fully understood. According to the Asymmetric Response Concept (ARC), dispersal capacity, species tolerances to stressors, and biotic interactions are three key drivers influencing community recovery of restored streams. However, the ARC remains to be tested. Here we used a dataset on benthic invertebrate communities of eleven restored stream sections in a former open sewer system that were sampled yearly over a period of eleven years. We applied four indices that reflect tolerance against chloride and organic pollution, the community's dispersal capacity and strength of competition to the benthic invertebrate taxa lists of each year and site. Subsequently, we used generalised linear mixed models to analyse the change of these indices over time since restoration. Dispersal capacity was high directly after restoration but continuously decreased over time. The initial communities thus consisted of good dispersers and were later joined by more slowly dispersing taxa. The tolerance to organic pollution also decreased over time, reflecting continuous improvement of water quality and an associated increase of sensitive species. On the contrary, chloride tolerances did not change, which could indicate a stable chloride level throughout the sampling period. Lastly, competition within the communities, reflected by interspecific trait niche overlap, increased with time since restoration. We show that recovery follows a specific pattern that is comparable between sites. Benthic communities change from tolerant, fast dispersing generalists to more sensitive, slowly dispersing specialists exposed to stronger competition. Our results lay support to the ARC (increasing role of competition, decreasing role of dispersal) but also underline that certain tolerances may still shape communities a decade after restoration. Disentangling the drivers of macroinvertebrate colonisation can help managers to better understand recovery trajectories and to define more realistic restoration targets.


Asunto(s)
Invertebrados , Ríos , Animales , Invertebrados/fisiología , Restauración y Remediación Ambiental/métodos , Monitoreo del Ambiente , Ecosistema , Distribución Animal
15.
Sci Total Environ ; 929: 172659, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657809

RESUMEN

Identifying which environmental drivers underlie degradation and improvements of ecological communities is a fundamental goal of ecology. Achieving this goal is a challenge due to diverse trends in both environmental conditions and ecological communities across regions, and it is constrained by the lack of long-term parallel monitoring of environmental and community data needed to study causal relationships. Here, we identify key environmental drivers using a high-resolution environmental - ecological dataset, an ensemble of the Soil and Water Assessment Tool (SWAT+) model, and ecological models to investigate effects of climate, land-use, and runoff on the decadal trend (2012-2021) of stream macroinvertebrate communities in a restored urban catchment and an impacted catchment with mixed land-uses in Germany. The decadal trends showed decreased precipitation, increased temperature, and reduced anthropogenic land-uses, which led to opposing runoff trends - with decreased runoff in the restored catchment and increased runoff in the impacted catchment. The two catchments also varied in decadal trends of taxonomic and trait composition and metrics. The most significant improvements over time were recorded in communities of the restored catchment sites, which have become wastewater free since 2007 to 2009. Within the restored catchment sites, community metric trends were primarily explained by land-use and evaporation trends, while community composition trends were mostly associated with precipitation and runoff trends. Meanwhile, the communities in the impacted catchment did not undergo significant changes between 2012 and 2021, likely influenced by the effects of prolonged droughts following floods after 2018. The results of our study confirm the significance of restoration and land-use management in fostering long-term improvements in stream communities, while climate change remains a prodigious threat. The coupling of long-term biodiversity monitoring with concurrent sampling of relevant environmental drivers is critical for preventative and restorative management in ecology.


Asunto(s)
Monitoreo del Ambiente , Invertebrados , Ríos , Animales , Alemania , Clima , Cambio Climático , Ecosistema , Movimientos del Agua
16.
Sci Total Environ ; 934: 173105, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750737

RESUMEN

The decline of river and stream biodiversity results from multiple simultaneous occuring stressors, yet few studies explore responses explore responses across various taxonomic groups at the same locations. In this study, we address this shortcoming by using a coherent data set to study the association of nine commonly occurring stressors (five chemical, one morphological and three hydraulic) with five taxonomic groups (bacteria, fungi, diatoms, macro-invertebrates and fish). According to studies on single taxonomic groups, we hypothesise that gradients of chemical stressors structure community composition of all taxonomic groups, while gradients of hydraulic and morphological stressors are mainly related to larger organisms such as benthic macro-invertebrates and fish. Organisms were sampled over two years at 20 sites in two catchments: a recently restored urban lowland catchment (Boye) and a moderately disturbed rural mountainous catchment (Kinzig). Dissimilarity matrices were computed for each taxonomic group within a catchment. Taxonomic dissimilarities between sites were linked to stressor dissimilarities using multivariable Generalized Linear Mixed Models. Stressor gradients were longer in the Boye, but did in contrast to the Kinzig not cover low stress intensities. Accordingly, responses of the taxonomic groups were stronger in the Kinzig catchment than in the recently restored Boye catchment. The discrepancy between catchments underlines that associations to stressors strongly depend on which part of the stressor gradient is covered in a catchment. All taxonomic groups were related to conductivity. Bacteria, fungi and macro-invertebrates change with dissolved oxygen, and bacteria and fungi with total nitrogen. Morphological and hydraulic stressors had minor correlations with bacteria, fungi and diatoms, while macro-invertebrates were strongly related to fine sediment and discharge, and fish to high flow peaks. The results partly support our hypotheses about the differential associations of the different taxonomic groups with the stressors.


Asunto(s)
Biodiversidad , Monitoreo del Ambiente , Ríos , Ríos/microbiología , Animales , Hongos , Diatomeas/fisiología , Invertebrados/fisiología , Peces , Bacterias/clasificación , Contaminantes Químicos del Agua/análisis
17.
Ecology ; 105(2): e4219, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38037301

RESUMEN

A tenet of ecology is that temporal variability in ecological structure and processes tends to decrease with increasing spatial scales (from locales to regions) and levels of biological organization (from populations to communities). However, patterns in temporal variability across trophic levels and the mechanisms that produce them remain poorly understood. Here we analyzed the abundance time series of spatially structured communities (i.e., metacommunities) spanning basal resources to top predators from 355 freshwater sites across three continents. Specifically, we used a hierarchical partitioning method to disentangle the propagation of temporal variability in abundance across spatial scales and trophic levels. We then used structural equation modeling to determine if the strength and direction of relationships between temporal variability, synchrony, biodiversity, and environmental and spatial settings depended on trophic level and spatial scale. We found that temporal variability in abundance decreased from producers to tertiary consumers but did so mainly at the local scale. Species population synchrony within sites increased with trophic level, whereas synchrony among communities decreased. At the local scale, temporal variability in precipitation and species diversity were associated with population variability (linear partial coefficient, ß = 0.23) and population synchrony (ß = -0.39) similarly across trophic levels, respectively. At the regional scale, community synchrony was not related to climatic or spatial predictors, but the strength of relationships between metacommunity variability and community synchrony decreased systematically from top predators (ß = 0.73) to secondary consumers (ß = 0.54), to primary consumers (ß = 0.30) to producers (ß = 0). Our results suggest that mobile predators may often stabilize metacommunities by buffering variability that originates at the base of food webs. This finding illustrates that the trophic structure of metacommunities, which integrates variation in organismal body size and its correlates, should be considered when investigating ecological stability in natural systems. More broadly, our work advances the notion that temporal stability is an emergent property of ecosystems that may be threatened in complex ways by biodiversity loss and habitat fragmentation.


Asunto(s)
Ecosistema , Cadena Alimentaria , Biodiversidad , Agua Dulce , Factores de Tiempo
18.
Nat Ecol Evol ; 8(6): 1098-1108, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38773326

RESUMEN

Inland navigation in Europe is proposed to increase in the coming years, being promoted as a low-carbon form of transport. However, we currently lack knowledge on how this would impact biodiversity at large scales and interact with existing stressors. Here we addressed this knowledge gap by analysing fish and macroinvertebrate community time series across large European rivers comprising 19,592 observations from 4,049 sampling sites spanning the past 32 years. We found ship traffic to be associated with biodiversity declines, that is, loss of fish and macroinvertebrate taxonomic richness, diversity and trait richness. Ship traffic was also associated with increases in taxonomic evenness, which, in concert with richness decreases, was attributed to losses in rare taxa. Ship traffic was especially harmful for benthic taxa and those preferring slow flows. These effects often depended on local land use and riparian degradation. In fish, negative impacts of shipping were highest in urban and agricultural landscapes. Regarding navigation infrastructure, the negative impact of channelization on macroinvertebrates was evident only when riparian degradation was also high. Our results demonstrate the risk of increasing inland navigation on freshwater biodiversity. Integrative waterway management accounting for riparian habitats and landscape characteristics could help to mitigate these impacts.


Asunto(s)
Biodiversidad , Peces , Invertebrados , Animales , Europa (Continente) , Invertebrados/fisiología , Ríos , Agua Dulce , Conservación de los Recursos Naturales , Navíos
19.
Sci Total Environ ; 879: 163017, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36963681

RESUMEN

In recent years, declining insect biodiversity has sparked interest among scientists and drawn the attention of society and politicians. However, our understanding of the extent of this decline is incomplete, particularly for freshwater insects that provide a key trophic link between aquatic and terrestrial ecosystems, but that are also especially vulnerable to climate change. To investigate the response of freshwater insects to climate change, we quantified shifts in insect abundance and diversity across 7264 samples covering Central Europe during 1990-2018 and related these changes to annual data on temperature and precipitation. We observed both increases in richness (10.6 %) and abundance (9.5 %) of freshwater insects over the past three decades. These changes were related to increases in summer temperature and summer precipitation, which had negative effects on species richness, and to increases in winter temperature and precipitation, which had positive effects. Further we found that increased temperature was generally related to increased abundance, whereas increased precipitation was associated with declines, thus highlighting the particularly varying impacts on differing insect orders. Given that freshwater insects have been more severely affected by global change than marine and terrestrial species, the observed increases are a positive sign, but the overall situation of freshwater invertebrates is still critical.


Asunto(s)
Ecosistema , Ríos , Animales , Invertebrados , Biodiversidad , Insectos
20.
Sci Total Environ ; 876: 162817, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36924970

RESUMEN

Rates of biological invasion continue to accelerate and threaten the structure and function of ecosystems worldwide. High habitat connectivity, multiple pathways, and inadequate monitoring have rendered aquatic ecosystems vulnerable to species introductions. Past riverine invasion dynamics were largely restricted to large rivers, leaving out smaller rivers that commonly harbour high freshwater biodiversity. Moreover, biodiversity time series have rarely been used to investigate invasions across larger spatial-temporal scales, limiting our understanding of aquatic invasion dynamics. Here, we used 6067 benthic invertebrate samples from streams and small rivers from the EU Water Framework Directive monitoring program collected across Central Europe between 2000 and 2018 to assess temporal changes to benthic invertebrate communities as well as non-native species. We assessed invasion rates according to temperature, precipitation, elevation, latitude, longitude, and stream type. Overall, average daily temperatures significantly increased by 0.02 °C per annum (0.34 °C in total) while annual precipitation significantly decreased by 0.01 mm per annum (-67.8 mm over the study period), paralleled with significant increases in overall species richness (12.3 %) and abundance (14.9 %); water quality was relatively stable. Non-native species richness increased 5-fold and abundance 40-fold, indicating an ongoing community shift from native to non-native species. The observed increase in invasions was stronger in low mountain rivers compared to low mountain streams, with the share of non-native species abundance and richness declining with increasing elevation and latitude but increasing with temperature. We found thermophilic non-native species invasion success was greatest in larger sized streams, at lower latitudes, lower elevations and higher temperatures. These results indicate that widespread environmental characteristics (i.e., temperature) could heighten invasion success and confer refuge effects (i.e., elevation and latitude) in higher sites. High altitude and latitude environments should be prioritised for prevention efforts, while biosecurity and management should be improved in lowland areas subject to greater anthropogenic pressure, where non-native introductions are more likely.


Asunto(s)
Ecosistema , Ríos , Animales , Biodiversidad , Invertebrados , Agua Dulce
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA