Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Environ Microbiol ; 25(3): 606-641, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36513610

RESUMEN

Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.


Asunto(s)
Ecología , Lagos , Genómica , Ecosistema , Bacterias/genética , Filogenia
2.
Environ Microbiol ; 23(8): 4295-4308, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34036706

RESUMEN

In the oceans and seas, environmental conditions change over multiple temporal and spatial scales. Here, we ask what factors affect the bacterial community structure across time, depth and size fraction during six seasonal cruises (2 years) in the ultra-oligotrophic Eastern Mediterranean Sea. The bacterial community varied most between size fractions (free-living (FL) vs. particle-associated), followed by depth and finally season. The FL community was taxonomically richer and more stable than the particle-associated (PA) one, which was characterized by recurrent 'blooms' of heterotrophic bacteria such as Alteromonas and Ralstonia. The heterotrophic FL and PA communities were also correlated with different environmental parameters: the FL population correlated with depth and phytoplankton, whereas PA bacteria were correlated primarily with the time of sampling. A significant part of the variability in community structure could, however, not be explained by the measured parameters. The metabolic potential of the PA community, predicted from 16S rRNA amplicon data using PICRUSt, was enriched in pathways associated with the degradation and utilization of biological macromolecules, as well as plastics, other petroleum products and herbicides. The FL community was enriched in predicted pathways for the metabolism of inositol phosphate, a potential phosphorus source, and of polycyclic aromatic hydrocarbons.


Asunto(s)
Bacterias , Petróleo , Bacterias/genética , Mar Mediterráneo , Fitoplancton , ARN Ribosómico 16S/genética
3.
Environ Microbiol ; 22(11): 4669-4688, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32840024

RESUMEN

Bacteria of the phylum Verrucomicrobia are ubiquitous in marine environments and can be found as free-living organisms or as symbionts of eukaryotic hosts. Little is known about host-associated Verrucomicrobia in the marine environment. Here we reconstructed two genomes of symbiotic Verrucomicrobia from bacterial metagenomes derived from the Atlanto-Mediterranean sponge Petrosia ficiformis and three genomes from strains that we isolated from offshore seawater of the Eastern Mediterranean Sea. Phylogenomic analysis of these five strains indicated that they are all members of Verrucomicrobia subdivision 4, order Opitutales. We compared these novel sponge-associated and seawater-isolated genomes to closely related Verrucomicrobia. Genomic analysis revealed that Planctomycetes-Verrucomicrobia microcompartment gene clusters are enriched in the genomes of symbiotic Opitutales including sponge symbionts but not in free-living ones. We hypothesize that in sponge symbionts these microcompartments are used for degradation of l-fucose and l-rhamnose, which are components of algal and bacterial cell walls and therefore may be found at high concentrations in the sponge tissue. Furthermore, we observed an enrichment of toxin-antitoxin modules in symbiotic Opitutales. We suggest that, in sponges, verrucomicrobial symbionts utilize these modules as a defence mechanism against antimicrobial activity deriving from the abundant microbial community co-inhabiting the host.


Asunto(s)
Poríferos/microbiología , Azúcares/metabolismo , Simbiosis , Sistemas Toxina-Antitoxina/genética , Verrucomicrobia/fisiología , Animales , Mar Mediterráneo , Microbiota , Filogenia , Agua de Mar/microbiología , Verrucomicrobia/clasificación , Verrucomicrobia/genética , Verrucomicrobia/metabolismo
4.
Environ Microbiol ; 22(11): 4658-4668, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32830371

RESUMEN

Diplonemids are considered marine protists and have been reported among the most abundant and diverse eukaryotes in the world oceans. Recently we detected the presence of freshwater diplonemids in Japanese deep freshwater lakes. However, their distribution and abundances in freshwater ecosystems remain unknown. We assessed abundance and diversity of diplonemids from several geographically distant deep freshwater lakes of the world by amplicon-sequencing, shotgun metagenomics and catalysed reporter deposition-fluorescent in situ hybridization (CARD-FISH). We found diplonemids in all the studied lakes, albeit with low abundances and diversity. We assembled long 18S rRNA sequences from freshwater diplonemids and showed that they form a new lineage distinct from the diverse marine clades. Freshwater diplonemids are a sister-group to a marine clade, which are mainly isolates from coastal and bay areas, suggesting a recent habitat transition from marine to freshwater habitats. Images of CARD-FISH targeted freshwater diplonemids suggest they feed on bacteria. Our analyses of 18S rRNA sequences retrieved from single-cell genomes of marine diplonemids show they encode multiple rRNA copies that may be very divergent from each other, suggesting that marine diplonemid abundance and diversity both have been overestimated. These results have wider implications on assessing eukaryotic abundances in natural habitats by using amplicon-sequencing alone.


Asunto(s)
Euglenozoos/clasificación , Euglenozoos/aislamiento & purificación , Lagos/microbiología , Biodiversidad , Ecosistema , Euglenozoos/citología , Euglenozoos/genética , Hibridación Fluorescente in Situ , Japón , Metagenómica , Filogenia , ARN Ribosómico 18S/genética , Especificidad de la Especie
5.
Environ Microbiol ; 19(3): 1077-1090, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27871126

RESUMEN

Sunlight can be directly harvested by photoheterotrophic bacteria to create a pH gradient across the membrane, which can then be utilized to produce ATP. Despite the potential importance of this trophic strategy, when and where such organisms are found in the seas and oceans is poorly described. Here, we describe the abundance and taxonomy of bacteria with different trophic strategies (heterotrophs, phototrophs and photoheterotrophs) in contrasting water masses of the ultra-oligotrophic eastern Mediterranean Sea. These water bodies, an anticyclonic eddy and a high-chlorophyll patch resulting from transport of nutrient-rich coastal waters into offshore oligotrophic waters, each supported different microbial populations in surface waters. Based on infrared microscopy and metagenomics, aerobic anoxygenic photoheterotrophic (AAP) bacteria represented up to 10.4% of the microbial community. In contrast, the proteorhodopsin (PR) gene was found in 78.6%-118.8% of the bacterial genome equivalents, the highest abundance reported to date. These results suggest that PR-mediated photoheterotrophy may be especially important in oligotrophic, potentially phosphate-limited conditions.


Asunto(s)
Bacterias/genética , Rodopsinas Microbianas/genética , Bacterias Aerobias/genética , Genes Bacterianos , Mar Mediterráneo , Metagenómica , Agua de Mar/microbiología
6.
Appl Environ Microbiol ; 82(4): 1274-1285, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26655754

RESUMEN

Sponges harbor a remarkable diversity of microbial symbionts in which signal molecules can accumulate and enable cell-cell communication, such as quorum sensing (QS). Bacteria capable of QS were isolated from marine sponges; however, an extremely small fraction of the sponge microbiome is amenable to cultivation. We took advantage of community genome assembly and binning to investigate the uncultured majority of sponge symbionts. We identified a complete N-acyl-homoserine lactone (AHL)-QS system (designated TswIR) and seven partial luxI homologues in the microbiome of Theonella swinhoei. The TswIR system was novel and shown to be associated with an alphaproteobacterium of the order Rhodobacterales, here termed Rhodobacterales bacterium TS309. The tswI gene, when expressed in Escherichia coli, produced three AHLs, two of which were also identified in a T. swinhoei sponge extract. The taxonomic affiliation of the 16S rRNA of Rhodobacterales bacterium TS309 to a sponge-coral specific clade, its enrichment in sponge versus seawater and marine sediment samples, and the presence of sponge-specific features, such as ankyrin-like domains and tetratricopeptide repeats, indicate a likely symbiotic nature of this bacterium.


Asunto(s)
Alphaproteobacteria/enzimología , Ligasas/aislamiento & purificación , Microbiota , Simbiosis , Theonella/microbiología , Acil-Butirolactonas/metabolismo , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Océano Índico , Ligasas/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
7.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38401169

RESUMEN

Photosynthetic cryptophytes are ubiquitous protists that are major participants in the freshwater phytoplankton bloom at the onset of spring. Mortality due to change in environmental conditions and grazing have been recognized as key factors contributing to bloom collapse. In contrast, the role of viral outbreaks as factors terminating phytoplankton blooms remains unknown from freshwaters. Here, we isolated and characterized a cryptophyte virus contributing to the annual collapse of a natural cryptophyte spring bloom population. This viral isolate is also representative for a clade of abundant giant viruses (phylum Nucleocytoviricota) found in freshwaters all over the world.


Asunto(s)
Virus Gigantes , Virus , Humanos , Fitoplancton , Criptófitas/genética , Eucariontes
8.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365254

RESUMEN

The evolutionary trajectory of Methylophilaceae includes habitat transitions from freshwater sediments to freshwater and marine pelagial that resulted in genome reduction (genome-streamlining) of the pelagic taxa. However, the extent of genetic similarities in the genomic structure and microdiversity of the two genome-streamlined pelagic lineages (freshwater "Ca. Methylopumilus" and the marine OM43 lineage) has so far never been compared. Here, we analyzed complete genomes of 91 "Ca. Methylopumilus" strains isolated from 14 lakes in Central Europe and 12 coastal marine OM43 strains. The two lineages showed a remarkable niche differentiation with clear species-specific differences in habitat preference and seasonal distribution. On the other hand, we observed a synteny preservation in their genomes by having similar locations and types of flexible genomic islands (fGIs). Three main fGIs were identified: a replacement fGI acting as phage defense, an additive fGI harboring metabolic and resistance-related functions, and a tycheposon containing nitrogen-, thiamine-, and heme-related functions. The fGIs differed in relative abundances in metagenomic datasets suggesting different levels of variability ranging from strain-specific to population-level adaptations. Moreover, variations in one gene seemed to be responsible for different growth at low substrate concentrations and a potential biogeographic separation within one species. Our study provides a first insight into genomic microdiversity of closely related taxa within the family Methylophilaceae and revealed remarkably similar dynamics involving mobile genetic elements and recombination between freshwater and marine family members.


Asunto(s)
Methylophilaceae , Genoma Bacteriano , Islas Genómicas , Filogenia , Lagos
9.
Int J Syst Evol Microbiol ; 63(Pt 5): 1678-1683, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22904228

RESUMEN

The yellow-pigmented, non-motile, Gram-negative, strictly aerobic, rod-shaped bacterial strain VI.18(T) was isolated from the Mediterranean sponge Axinella verrucosa collected off the coast near Sdot Yam, Israel. Results from 16S rRNA gene sequence analysis indicated that the isolate belonged to the family Flammeovirgaceae. The highest nucleotide similarity (91.4 %) occurred with Aureibacter tunicatorum A5Q-118(T). The predominant cellular fatty acids of strain VI.18(T) were iso-C15 : 0 (56.0 %), iso-C17 : 1ω9c (22.8 %) and C16 : 0 (7.4 %) and its major respiratory quinone was MK-7. The DNA G+C content was 47.5 mol%. The strain could readily be distinguished from its phylogenetically closest relatives by phenotypic, physiological and chemotaxonomic properties. On the basis of the data from the present polyphasic study, we propose a novel genus and species within the family Flammeovirgaceae, with the name Fulvitalea axinellae gen. nov., sp. nov. Strain VI.18(T) ( = ATCC BAA-2395(T)  = LMG 26722(T)) is the type strain of Fulvitalea axinellae.


Asunto(s)
Axinella/microbiología , Bacteroidetes/clasificación , Filogenia , Agua de Mar/microbiología , Animales , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Israel , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis
10.
Int J Syst Evol Microbiol ; 63(Pt 3): 939-945, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22659504

RESUMEN

A novel aerobic bacterium, designated strain PIII.02(T), was isolated from a Mediterranean sponge (Axinella polypoides) collected off the Israeli coast near Sdot Yam. The non-motile cells were Gram-staining-negative, oxidase-positive and catalase-positive. The orange pigment of colonies growing on marine agar was neither diffusible nor flexirubin-like. Strain PIII.02(T) grew at 15-35 °C, at pH 6.0-9.0, with 2.0-7.0 % (w/v) NaCl, and with 1.0-8.0 % (w/v) sea salts. The predominant fatty acids were iso-C15 : 0, iso-C16 : 1 H, iso-C16 : 0, C16 : 0, anteiso-C15 : 0 and C16 : 1ω7c. The major respiratory quinone was MK-7. The genomic DNA G+C content of the novel strain was 38.1 mol%. Results from 16S rRNA gene sequence analysis indicated that strain PIII.02(T) was distantly related to established members of the phylum Bacteroidetes. The established species found to be most closely related to the novel strain was Persicobacter diffluens NCIMB 1402(T) (87.6 % 16S rRNA gene sequence similarity). Based on the phenotypic and chemotaxonomic data and the results of the phylogenetic analyses, strain PIII.02(T) represents a novel species of a new genus, for which the name Luteivirga sdotyamensis gen. nov., sp. nov. is proposed. The type strain is PIII.02(T) ( = ATCC BAA-2393(T)  = LMG 26723(T)).


Asunto(s)
Axinella/microbiología , Bacteroidetes/clasificación , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Israel , Mar Mediterráneo , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis
11.
Int J Syst Evol Microbiol ; 63(Pt 3): 1089-1095, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22707537

RESUMEN

Two bacterial strains, VI.14 and VIII.04(T), were isolated from the Mediterranean sponge Axinella verrucosa collected off the Israeli coast near Sdot Yam. The non-motile, aerobic, Gram-negative isolates were oxidase-negative and catalase-positive, and formed golden-brown colonies on marine agar 2216. The pigment was neither diffusible nor flexirubin-like. Strain VIII.04(T) grew at 15-37 °C, at pH 6.0-9.0, in the presence of 20-50 g NaCl l(-1) and 20-80 g sea salts l(-1), The spectrum was narrower for strain VI.14, with growth at pH 7.0-8.0. and in the presence of 30-50 g NaCl l(-1) and 30-70 g sea salts l(-1). The predominant fatty acid (>50 %) in both strains was iso-C15 : 0, and the major respiratory quinone was MK-6. The DNA G+C content was 30.7 and 31.1 mol% for VIII.04(T) and VI.14, respectively. Results from 16S rRNA sequence similarity and phylogenetic analyses indicated that both strains are closely related to members of the family Flavobacteriaceae within the phylum Bacteroidetes, with as much as 91.7 % 16S rRNA sequence similarity. On the basis of data from the polyphasic analysis, we suggest that the strains represent a novel species in a new genus within the family Flavobacteriaceae, for which the name Aureivirga marina gen. nov., sp. nov. is proposed. Strain VIII.04(T) ( = ATCC BAA-2394(T) = LMG 26721(T)) is the type strain of Aureivirga marina.


Asunto(s)
Axinella/microbiología , Flavobacteriaceae/clasificación , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Flavobacteriaceae/genética , Flavobacteriaceae/aislamiento & purificación , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis
12.
ISME J ; 17(1): 84-94, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36207492

RESUMEN

Morphology-based microscopic approaches are insufficient for a taxonomic classification of bacterivorous heterotrophic nanoflagellates (HNF) in aquatic environments since their cells do not display reliably distinguishable morphological features. This leads to a considerable lack of ecological insights into this large and taxonomically diverse functional guild. Here, we present a combination of fluorescence in situ hybridization followed by catalyzed reporter deposition (CARD-FISH) and environmental sequence analyses which revealed that morphologically indistinguishable, so far largely cryptic and uncultured aplastidic cryptophytes are ubiquitous and prominent protistan bacterivores in diverse freshwater ecosystems. Using a general probe for Cryptophyceae and its heterotrophic CRY1 lineage, we analyzed different water layers in 24 freshwater lakes spanning a broad range of trophic states, sizes and geographical locations. We show that bacterivorous aplastidic cryptophytes and the CRY1 lineage accounted for ca. 2/3 and » of total HNF, respectively, in both epilimnetic and hypolimnetic samples. These heterotrophic cryptophytes were generally smaller and more abundant than their chloroplast-bearing counterparts. They had high uptake rates of bacteria, hinting at their important roles in channeling carbon flow from prokaryotes to higher trophic levels. The worldwide ubiquity of Cryptophyceae and its CRY1 lineage was supported by 18S rRNA gene sequence analyses across a diverse set of 297 freshwater metagenomes. While cryptophytes have been considered to be mainly plastidic "algae", we show that it is the aplastidic counterparts that contribute considerably to bacterial mortality rates. Additionally, our results suggest an undiscovered diversity hidden amongst these abundant and morphologically diverse aplastidic cryptophytes.


Asunto(s)
Criptófitas , Ecosistema , Hibridación Fluorescente in Situ , Criptófitas/genética , Criptófitas/microbiología , Procesos Heterotróficos , Bacterias/genética , Lagos , Filogenia
13.
ISME J ; 17(6): 943-946, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36964199

RESUMEN

Low-GC Actinobacteriota of the order 'Ca. Nanopelagicales' (also known as acI or hgcI clade) are abundant in freshwaters around the globe. Extensive predation pressure by phages has been assumed to be the reason for their high levels of microdiversity. So far, however, only a few metagenome-assembled phages have been proposed to infect them and no phages have been isolated. Taking advantage of recent advances in the cultivation of 'Ca. Nanopelagicales' we isolated a novel species of its genus 'Ca. Planktophila'. Using this isolate as bait, we cultivated the first two phages infecting this abundant bacterial order. Both genomes contained a whiB-like transcription factor and a RNA polymerase sigma-70 factor, which might aid in manipulating their host's metabolism. Both phages encoded a glycosyltransferase and one an anti-restriction protein, potential means to evade degradation of their DNA by nucleases present in the host genome. The two phage genomes shared only 6% of their genome with their closest relatives, with whom they form a previously uncultured family of actinophages within the Caudoviricetes. Read recruitment analyses against globally distributed metagenomes revealed the endemic distribution of this group of phages infecting 'Ca. Nanopelagicales'. The recruitment pattern against metagenomes from the isolation site and the modular distribution of shared genes between the two phages indicate high levels of horizontal gene transfer, likely mirroring the microdiversity of their host in the evolutionary arms race between host and phage.


Asunto(s)
Bacteriófagos , Bacterias/genética , Transferencia de Gen Horizontal , Metagenoma , Agua Dulce/microbiología , Genoma Viral , Filogenia
14.
ISME J ; 17(7): 1063-1073, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37120702

RESUMEN

Rhodopsin photosystems convert light energy into electrochemical gradients used by the cell to produce ATP, or for other energy-demanding processes. While these photosystems are widespread in the ocean and have been identified in diverse microbial taxonomic groups, their physiological role in vivo has only been studied in few marine bacterial strains. Recent metagenomic studies revealed the presence of rhodopsin genes in the understudied Verrucomicrobiota phylum, yet their distribution within different Verrucomicrobiota lineages, their diversity, and function remain unknown. In this study, we show that more than 7% of Verrucomicrobiota genomes (n = 2916) harbor rhodopsins of different types. Furthermore, we describe the first two cultivated rhodopsin-containing strains, one harboring a proteorhodopsin gene and the other a xanthorhodopsin gene, allowing us to characterize their physiology under laboratory-controlled conditions. The strains were isolated in a previous study from the Eastern Mediterranean Sea and read mapping of 16S rRNA gene amplicons showed the highest abundances of these strains at the deep chlorophyll maximum (source of their inoculum) in winter and spring, with a substantial decrease in summer. Genomic analysis of the isolates suggests that motility and degradation of organic material, both energy demanding functions, may be supported by rhodopsin phototrophy in Verrucomicrobiota. Under culture conditions, we show that rhodopsin phototrophy occurs under carbon starvation, with light-mediated energy generation supporting sugar transport into the cells. Overall, this study suggests that photoheterotrophic Verrucomicrobiota may occupy an ecological niche where energy harvested from light enables bacterial motility toward organic matter and supports nutrient uptake.


Asunto(s)
Bacterias , Rodopsina , Rodopsina/genética , Rodopsina/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Bacterias/genética , Procesos Fototróficos , Transporte Biológico , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Filogenia
15.
Front Microbiol ; 13: 867694, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464964

RESUMEN

Marine microbial communities vary seasonally and spatially, but these two factors are rarely addressed together. In this study, the temporal and spatial patterns of the bacterial and archaeal community were studied along a coast-to-offshore transect in the Eastern Mediterranean Sea (EMS) over six cruises, in three seasons of 2 consecutive years. Amplicon sequencing of 16S rRNA genes and transcripts was performed to determine presence and activity, respectively. The ultra-oligotrophic status of the Southeastern Mediterranean Sea was reflected in the microbial community composition dominated by oligotrophic bacterial groups such as SAR11, even at the most coastal station sampled, throughout the year. Seasons significantly affected the microbial communities, explaining more than half of the observed variability. However, the same few taxa dominated the community over the 2-year sampling period, varying only in their degree of dominance. While there was no overall effect of station location on the microbial community, the most coastal site (16 km offshore) differed significantly in community structure and activity from the three further offshore stations in early winter and summer. Our data on the microbial community compositions and their seasonality support previous notions that the EMS behaves like an oceanic gyre.

16.
Microbiome ; 10(1): 84, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35659305

RESUMEN

BACKGROUND: The increased use of metagenomics and single-cell genomics led to the discovery of organisms from phyla with no cultivated representatives and proposed new microbial lineages such as the candidate phyla radiation (CPR or Patescibacteria). These bacteria have peculiar ribosomal structures, reduced metabolic capacities, small genome, and cell sizes, and a general host-associated lifestyle was proposed for the radiation. So far, most CPR genomes were obtained from groundwaters; however, their diversity, abundance, and role in surface freshwaters is largely unexplored. Here, we attempt to close these knowledge gaps by deep metagenomic sequencing of 119 samples of 17 different freshwater lakes located in Europe and Asia. Moreover, we applied Fluorescence in situ Hybridization followed by Catalyzed Reporter Deposition (CARD-FISH) for a first visualization of distinct CPR lineages in freshwater samples. RESULTS: A total of 174 dereplicated metagenome-assembled genomes (MAGs) of diverse CPR lineages were recovered from the investigated lakes, with a higher prevalence from hypolimnion samples (162 MAGs). They have reduced genomes (median size 1 Mbp) and were generally found in low abundances (0.02-14.36 coverage/Gb) and with estimated slow replication rates. The analysis of genomic traits and CARD-FISH results showed that the radiation is an eclectic group in terms of metabolic capabilities and potential lifestyles, ranging from what appear to be free-living lineages to host- or particle-associated groups. Although some complexes of the electron transport chain were present in the CPR MAGs, together with ion-pumping rhodopsins and heliorhodopsins, we believe that they most probably adopt a fermentative metabolism. Terminal oxidases might function in O2 scavenging, while heliorhodopsins could be involved in mitigation against oxidative stress. CONCLUSIONS: A high diversity of CPR MAGs was recovered, and distinct CPR lineages did not seem to be limited to lakes with specific trophic states. Their reduced metabolic capacities resemble the ones described for genomes in groundwater and animal-associated samples, apart from Gracilibacteria that possesses more complete metabolic pathways. Even though this radiation is mostly host-associated, we also observed organisms from different clades (ABY1, Paceibacteria, Saccharimonadia) that appear to be unattached to any other organisms or were associated with 'lake snow' particles (ABY1, Gracilibacteria), suggesting a broad range of potential life-strategies in this phylum. Video Abstract.


Asunto(s)
Metagenoma , Metagenómica , Animales , Bacterias , Hibridación Fluorescente in Situ , Lagos/microbiología , Metagenoma/genética , Filogenia
17.
Front Microbiol ; 11: 622824, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537022

RESUMEN

Sponges are among the oldest metazoans and their success is partly due to their abundant and diverse microbial symbionts. They are one of the few animals that have Thaumarchaeota symbionts. Here we compare genomes of 11 Thaumarchaeota sponge symbionts, including three new genomes, to free-living ones. Like their free-living counterparts, sponge-associated Thaumarchaeota can oxidize ammonia, fix carbon, and produce several vitamins. Adaptions to life inside the sponge host include enrichment in transposases, toxin-antitoxin systems and restriction modifications systems, enrichments previously reported also from bacterial sponge symbionts. Most thaumarchaeal sponge symbionts lost the ability to synthesize rhamnose, which likely alters their cell surface and allows them to evade digestion by the host. All but one archaeal sponge symbiont encoded a high-affinity, branched-chain amino acid transporter system that was absent from the analyzed free-living thaumarchaeota suggesting a mixotrophic lifestyle for the sponge symbionts. Most of the other unique features found in sponge-associated Thaumarchaeota, were limited to only a few specific symbionts. These features included the presence of exopolyphosphatases and a glycine cleavage system found in the novel genomes. Thaumarchaeota have thus likely highly specific interactions with their sponge host, which is supported by the limited number of host sponge species to which each of these symbionts is restricted.

18.
Nat Microbiol ; 2(12): 1696, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29057995

RESUMEN

In the version of this Letter originally published, the authors incorrectly stated that primers 28F-519R were reported in ref. 54 to underestimate the abundance of SAR11 in the ocean. This statement has now been amended in all versions of the Letter.

19.
Nat Microbiol ; 2(12): 1608-1615, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28970475

RESUMEN

Oceanic ecosystems are dominated by minute microorganisms that play a major role in food webs and biogeochemical cycles 1 . Many microorganisms thrive in the dilute environment due to their capacity to locate, attach to, and use patches of nutrients and organic matter 2,3 . We propose that some free-living planktonic bacteria have traded their ability to stick to nutrient-rich organic particles for a non-stick cell surface that helps them evade predation by mucous filter feeders. We used a combination of in situ sampling techniques and next-generation sequencing to study the biological filtration of microorganisms at the phylotype level. Our data indicate that some marine bacteria, most notably the highly abundant Pelagibacter ubique and most other members of the SAR 11 clade of the Alphaproteobacteria, can evade filtration by slipping through the mucous nets of both pelagic and benthic tunicates. While 0.3 µm polystyrene beads and other similarly-sized bacteria were efficiently filtered, SAR11 members were not captured. Reversed-phase chromatography revealed that most SAR11 bacteria have a much less hydrophobic cell surface than that of other planktonic bacteria. Our data call for a reconsideration of the role of surface properties in biological filtration and predator-prey interactions in aquatic systems.


Asunto(s)
Alphaproteobacteria/metabolismo , Proteínas Bacterianas/metabolismo , Extensiones de la Superficie Celular , Interacciones Hidrofóbicas e Hidrofílicas , Agua de Mar/microbiología , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Organismos Acuáticos/metabolismo , Bacterias , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Extensiones de la Superficie Celular/genética , Extensiones de la Superficie Celular/metabolismo , Cadena Alimentaria , Francia , Mar Mediterráneo , Océanos y Mares , Poliestirenos/química , ARN Ribosómico 16S/genética , Propiedades de Superficie
20.
Front Microbiol ; 7: 416, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27092109

RESUMEN

Owing to the extensive development of drug resistance in pathogens against the available antibiotic arsenal, antimicrobial resistance is now an emerging major threat to public healthcare. Anti-virulence drugs are a new type of therapeutic agent aiming at virulence factors rather than killing the pathogen, thus providing less selective pressure for evolution of resistance. One promising example of this therapeutic concept targets bacterial quorum sensing (QS), because QS controls many virulence factors responsible for bacterial infections. Marine sponges and their associated bacteria are considered a still untapped source for unique chemical leads with a wide range of biological activities. In the present study, we screened extracts of 14 sponge species collected from the Red and Mediterranean Sea for their quorum-quenching (QQ) potential. Half of the species showed QQ activity in at least 2 out of 3 replicates. Six out of the 14 species were selected for bacteria isolation, to test for QQ activity also in isolates, which, once cultured, represent an unlimited source of compounds. We show that ≈20% of the isolates showed QQ activity based on a Chromobacterium violaceum CV026 screen, and that the presence or absence of QQ activity in a sponge extract did not correlate with the abundance of isolates with the same activity from the same sponge species. This can be explained by the unknown source of QQ compounds in sponge-holobionts (host or symbionts), and further by the possible non-symbiotic nature of bacteria isolated from sponges. The potential symbiotic nature of the isolates showing QQ activity was tested according to the distribution and abundance of taxonomically close bacterial Operational Taxonomic Units (OTUs) in a dataset including 97 sponge species and 178 environmental samples (i.e., seawater, freshwater, and marine sediments). Most isolates were found not to be enriched in sponges and may simply have been trapped in the filtration channels of the sponge at the time of collection. Our results highlight potential for QQ-bioactive lead molecules for anti-virulence therapy both from sponges and the bacteria isolated thereof, independently on the symbiotic nature of the latter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA