Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Tissue Cell ; 88: 102327, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493756

RESUMEN

BACKGROUND: Ulcerative colitis is a risk factor for colorectal carcinoma. Different mechanisms are related to colitis like apoptosis and hyperproliferation. Moringa oleifera leaves extract (MO) provides a promising option to overcome the risk. PURPOSE: To examine the colonic changes in a rat model of colitis induced by sodium nitrate (SN) and study the effects of MO. STUDY DESIGN: Eight adult male rats were allocated in each of the three group; control (distilled water), SN (100 mg/kg/day, orally via gastric gavage), and SN + MO (100 mg/kg/day, orally via gastric gavage). METHODS: Body weight was measured after the end of the experiment. Colonic homogenates were tested for levels of oxidative stress indicators. Immunohistochemistry for P53, PCNA and Ki-67 was performed. Fresh colon specimens were used for quantitative real-time PCR for assessment of P53, PCNA and Ki-67 gene expression. RESULTS: SN group revealed a significant decreased weight (p = 0.002). MDA and NO levels were higher with SN administration than with MO co-administration (p= 0.04, 0.01 respectively). GSH level was reduced in SN group (p = 0.02) and significantly increased with MO intake (p = 0.04). SN-induced colonic destructive changes were reversed with MO. P53, PCNA and Ki-67 levels of gene expression were reduced in SN + MO group than SN group (P = 0.007, 0.02, 0.001 respectively). CONCLUSION: MO protected the colonic mucosa against SN-induced changes regulating apoptosis, and cell proliferation.


Asunto(s)
Antígeno Ki-67 , Moringa oleifera , Nitratos , Extractos Vegetales , Hojas de la Planta , Antígeno Nuclear de Célula en Proliferación , Proteína p53 Supresora de Tumor , Animales , Moringa oleifera/química , Proteína p53 Supresora de Tumor/metabolismo , Antígeno Ki-67/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Extractos Vegetales/farmacología , Masculino , Hojas de la Planta/química , Ratas , Nitratos/metabolismo , Biomarcadores/metabolismo , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Modelos Animales de Enfermedad , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Estrés Oxidativo/efectos de los fármacos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38112993

RESUMEN

Aging represents a complex biological process associated with decline in skeletal muscle functions. Aging impairs satellite cells that serve as muscle progenitor cells. Probiotic supplementation may have many beneficial effects via various mechanisms. We examined the possible effects of probiotics in stimulating the proliferation of myogenic stellate cells in aging rats. Twenty-four male albino Sprague-Dawley rats were classified equally into four groups: adult control, old control, adult + probiotics, and old + probiotics. Probiotics (Lactobacillus LB) were administered gavage at a dose of 1 ml (1 × 109 CFU/ml/day) for 4 weeks. A significant increase in the relative gastrocnemius weight ratio and improvement of contractile parameters was detected in the old + probiotics group (0.6 ± 0.01) compared to the old control group (0.47 ± 0.01; P < 0.001). Probiotics significantly upregulated the activities of GSH, while NO and MDA were markedly decreased compared to control groups (P ≤ 0.001). Also, probiotics increased the mRNA and protein expressions of myogenin and CD34 (P < 0.05) as determined by real-time PCR and immunohistochemistry. Moreover, the old + probiotics group showed apparent restoration of the connective tissue spaces, reflecting the all-beneficial effects of probiotics. Our findings indicated that probiotics attenuated myopathic changes in aging rats probably through activation of the myogenic stellate cells. Probiotics improved the muscle weight, function, antioxidant activity, and myogenic transcription factors of the skeletal muscle.

3.
Front Mol Biosci ; 10: 1306523, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38357327

RESUMEN

Background: High-fat diet-induced obesity is linked to suppression of aquaporins (AQPs) expression in different tissues. Both vitamin D and intermittent fasting were identified to enhance AQPs expression. In the urinary bladder, AQP-1 and AQP-3 mRNA transcripts were identified. Vitamin D has an impact on a variety of genes that encode proteins that control cell proliferation, differentiation, and death. Aim: To assess potential benefits of vitamin D and intermittent fasting (IF) and to explore alterations to the urinary bladder triggered by high-fat diet (HFD) in a rat model of obesity. Methods: Each of the 4 groups contained six adult male albino rats; control: a standard rodent chew for 12 weeks, HFD: HFD and fructose were administered orally via gastric gavage for 12 weeks, and vitamin D: HFD and fructose were administered orally for 8 weeks, then 4 weeks of intraperitoneal injection of vitamin D (5 microns/Kg/2 days) and IF group: Received intraperitoneal injections of vitamin D (5 microns/Kg/2 days) for 4 weeks after consumption of HFD and fructose orally for 8 weeks. The serum lipid profile was conducted at end of the experiment. In the bladder homogenates, the levels of oxidative stress indicators were assessed. Quantitative real-time PCR was performed on recently collected bladder samples. AQP-1 and AQP-3 immunohistochemistry was done. Results: When compared to the HFD group, the vitamin D and IF groups both demonstrated a substantial improvement in histopathological, immunohistochemical, biochemical, and molecular markers. Conclusion: In all examined parameters, IF exceeded vitamin D as a preventive factor for the urinary bladder deterioration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA