RESUMEN
With the increasing demand for net-zero sustainable aviation fuels (SAF), new conversion technologies are needed to process waste feedstocks and meet carbon reduction and cost targets. Wet waste is a low-cost, prevalent feedstock with the energy potential to displace over 20% of US jet fuel consumption; however, its complexity and high moisture typically relegates its use to methane production from anaerobic digestion. To overcome this, methanogenesis can be arrested during fermentation to instead produce C2 to C8 volatile fatty acids (VFA) for catalytic upgrading to SAF. Here, we evaluate the catalytic conversion of food waste-derived VFAs to produce n-paraffin SAF for near-term use as a 10 vol% blend for ASTM "Fast Track" qualification and produce a highly branched, isoparaffin VFA-SAF to increase the renewable blend limit. VFA ketonization models assessed the carbon chain length distributions suitable for each VFA-SAF conversion pathway, and food waste-derived VFA ketonization was demonstrated for >100 h of time on stream at approximately theoretical yield. Fuel property blending models and experimental testing determined normal paraffin VFA-SAF meets 10 vol% fuel specifications for "Fast Track." Synergistic blending with isoparaffin VFA-SAF increased the blend limit to 70 vol% by addressing flashpoint and viscosity constraints, with sooting 34% lower than fossil jet. Techno-economic analysis evaluated the major catalytic process cost-drivers, determining the minimum fuel selling price as a function of VFA production costs. Life cycle analysis determined that if food waste is diverted from landfills to avoid methane emissions, VFA-SAF could enable up to 165% reduction in greenhouse gas emissions relative to fossil jet.
Asunto(s)
Biocombustibles , Ácidos Grasos Volátiles/metabolismo , Alimentos , Eliminación de Residuos , Aviación , Catálisis , Gases de Efecto Invernadero , MetanoRESUMEN
Lignocellulosic biomass offers a renewable carbon source which can be anaerobically digested to produce short-chain carboxylic acids. Here, we assess fuel properties of oxygenates accessible from catalytic upgrading of these acids a priori for their potential to serve as diesel bioblendstocks. Ethers derived from C2 and C4 carboxylic acids are identified as advantaged fuel candidates with significantly improved ignition quality (>56% cetane number increase) and reduced sooting (>86% yield sooting index reduction) when compared to commercial petrodiesel. The prescreening process informed conversion pathway selection toward a C11 branched ether, 4-butoxyheptane, which showed promise for fuel performance and health- and safety-related attributes. A continuous, solvent-free production process was then developed using metal oxide acidic catalysts to provide improved thermal stability, water tolerance, and yields. Liter-scale production of 4-butoxyheptane enabled fuel property testing to confirm predicted fuel properties, while incorporation into petrodiesel at 20 vol % demonstrated 10% improvement in ignition quality and 20% reduction in intrinsic sooting tendency. Storage stability of the pure bioblendstock and 20 vol % blend was confirmed with a common fuel antioxidant, as was compatibility with elastomeric components within existing engine and fueling infrastructure. Technoeconomic analysis of the conversion process identified major cost drivers to guide further research and development. Life-cycle analysis determined the potential to reduce greenhouse gas emissions by 50 to 271% relative to petrodiesel, depending on treatment of coproducts.
RESUMEN
Small molecule/DNA hybrids (SMDHs) have been considered as nanoscale building blocks for engineering 2D and 3D supramolecular DNA assembly. Herein, we report an efficient on-bead amide-coupling approach to prepare SMDHs with multiple oligodeoxynucleotide (ODN) strands. Our method is high yielding under mild and user-friendly conditions with various organic substrates and homo- or mixed-sequenced ODNs. Metal catalysts and moisture- and air-free conditions are not required. The products can be easily analyzed by LC-MS with accurate mass resolution. We also explored nanometer-sized shape-persistent macrocycles as novel multitopic organic linkers to prepare SMDHs. SMDHs bearing up to six ODNs were successfully prepared through the coupling of arylenethynylene macrocycles with ODNs, which were used to mediate the assembly of gold nanoparticles.
Asunto(s)
Amidas/química , ADN/química , Bibliotecas de Moléculas Pequeñas/química , Estructura Molecular , Oligodesoxirribonucleótidos/químicaRESUMEN
Achieving global sustainability will require balancing encroaching climate changes while maintaining existing quality of life. Using sunlight to purify wastewater while simultaneously generating usable fuels is an opportunity to approach both targets in a cost-efficient manner. In addition, converting biomass products to usable polymers is a sustainable approach for potentially replacing polystyrene or other petroleum derived polymers. Phenols from medical, manufacturing, and agricultural waste are commonly found in many water sources, and they are known to foul common reverse osmosis membranes. Here, we show oxidative polymerization of guaiacol, an aromatic compound derived from biomass, with concurrent hydrogen gas generation by using platinum-seeded cadmium sulfide nanorods (Pt@CdS) as photocatalysts. Rather than forming short oligomers as typically made by enzymes such as laccase and peroxidase, the resulting polymers show higher molecular weights that can more easily flocculate out of water. By comparing guaiacol conversion to molecular weight and dispersity, the guaiacol was found to polymerize via a chain-growth process. We also show that Pt@CdS can polymerize other phenols as well by testing the monomers phenol, 2,6-dihydroxybenzoic acid, gallic acid, and vanillin. Lastly, because the aqueous solubility of these aromatic polymers decreases dramatically with molecular weight, polymerization reactions were also tested in biphasic solutions to determine if chain growth could propagate in the oil phase. We show that the Pt@CdS nanoparticles can form stable Pickering emulsions in various biphasic combinations, and that both H2 formation and polymer molecular weight correlated with the partition coefficient of guaiacol into the oil phase as well as the solubility of the growing polymer chains. These combined studies demonstrate the possibility of using nanoscale photocatalysts to oxidatively polymerize phenolic substrates via a chain-growth mechanism, thereby providing a path for pretreating water by flocculating out contaminants with concurrent generation of hydrogen.
RESUMEN
This paper reports the design and preparation of a biohybrid photoelectrochemical cell (PEC) that can drive the tandem enzymatic oxidation and aldol condensation of n-butanol (BuOH) to C8 2-ethylhexenal (2-EH). In this work, BuOH was first oxidized to n-butyraldehyde (BA) by the alcohol oxidase enzyme (AOx), concurrently generating hydrogen peroxide (H2O2). To preserve enzyme activity and increase kinetics nearly 2-fold, the H2O2 was removed by oxidation at a bismuth vanadate (BiVO4) photoanode. Organocatalyzed aldol condensation of C4 BA to C8 2-EH improved the overall BuOH conversion to 6.2 ± 0.1% in a biased PEC after 16 h. A purely light-driven, unbiased PEC showed 3.1 ± 0.1% BuOH conversion, or ~50% of that obtained from the biased system. Replacing AOx with the enzyme alcohol dehydrogenase (ADH), which requires the diffusional nicotinamide adenine dinucleotide cofactor (NAD+/NADH), resulted in only 0.2% BuOH conversion due to NAD+ dimerization at the photoanode. Lastly, the application of more positive biases with the biohybrid AOx PEC led to measurable production of H2 at the cathode, but at the cost of lower BA and 2-EH yields due to both product overoxidation and decreased enzyme activity.
RESUMEN
Ethanol is a ubiquitous fermentation product well-tolerated by microbes, but purification from growth media requires multiple distillations or other energy intensive processes. Converting such metabolites to larger, hydrophobic products would both yield higher energy products and facilitate separation. Here, we demonstrate the conversion of C2 ethanol to C8 2-ethylhexenal via a sequential oxidation-aldol-hydrogenation-aldol process with solar energy as the only required input. Photocatalysis was utilized to drive enzymatic oxidation of ethanol, while biphasic media in conjunction with aldol coupling and Pd assisted hydrogenation kept the oxidation and reduction processes physically and chemically separated. Using this process, 2-ethylhexenal was produced from ethanol in both buffer and diluted yeast media.
RESUMEN
Microbes produce low-molecular-weight alcohols from sugar, but these metabolites are difficult to separate from water and possess relatively low heating values. A combination of photo-, organo-, and enzyme catalysis is shown here to convert C4 butanol (BuOH) to C8 2-ethylhexenal (2-EH) using only solar energy to drive the process. First, alcohol dehydrogenase (ADH) catalyzed the oxidation of BuOH to butyraldehyde (BA), using NAD+ as a cofactor. To prevent back reaction, NAD+ was regenerated using a platinum-seeded cadmium sulfide (Pt@CdS) photocatalyst. An amine-based organocatalyst then upgraded BA to 2-EH under mild aqueous conditions rather than harsh basic conditions in order to preserve enzyme and photocatalyst stability. The process also simultaneously increased total BuOH conversion. Thus, three disparate types of catalysts synergistically generated C8 products from C4 alcohols under green chemistry conditions of neutral pH, low temperature, and pressure.
RESUMEN
Integrating non-enzymatic chemistry with living systems has the potential to greatly expand the types and yields of chemicals that can be sourced from renewable feedstocks. The in situ conversion of microbial metabolites to higher order products will ensure their continuous generation starting from a given cellular reaction mixture. We present here a systematic study of different organocatalysts that enable aldol condensation in biological media under physiological conditions of neutral pH, moderate temperature, and ambient pressure. The relative toxicities of each catalyst were tested against bacteria, and the catalysts were found to provide good yields of homoaldol products in bacterial cultures containing aldehydes. Lastly, we demonstrate that a biocompatible oil can be used to selectively extract the upgraded products, which enabes facile isolation and decreases the product toxicity to microbes.