Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(6): 1313-1328.e13, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491384

RESUMEN

Emerging evidence indicates a central role for the microbiome in immunity. However, causal evidence in humans is sparse. Here, we administered broad-spectrum antibiotics to healthy adults prior and subsequent to seasonal influenza vaccination. Despite a 10,000-fold reduction in gut bacterial load and long-lasting diminution in bacterial diversity, antibody responses were not significantly affected. However, in a second trial of subjects with low pre-existing antibody titers, there was significant impairment in H1N1-specific neutralization and binding IgG1 and IgA responses. In addition, in both studies antibiotics treatment resulted in (1) enhanced inflammatory signatures (including AP-1/NR4A expression), observed previously in the elderly, and increased dendritic cell activation; (2) divergent metabolic trajectories, with a 1,000-fold reduction in serum secondary bile acids, which was highly correlated with AP-1/NR4A signaling and inflammasome activation. Multi-omics integration revealed significant associations between bacterial species and metabolic phenotypes, highlighting a key role for the microbiome in modulating human immunity.


Asunto(s)
Antibacterianos/farmacología , Anticuerpos Antivirales/inmunología , Microbioma Gastrointestinal/fisiología , Inmunidad/efectos de los fármacos , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Adolescente , Adulto , Formación de Anticuerpos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Voluntarios Sanos , Humanos , Inmunogenicidad Vacunal/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Masculino , Adulto Joven
2.
Mol Ecol ; 31(5): 1577-1594, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35000227

RESUMEN

A growing literature demonstrates the impact of helminths on their host gut microbiome. We investigated whether the stickleback host microbiome depends on ecoevolutionary variables by testing the impact of exposure to the cestode parasite Schistocephalus solidus with respect to infection success, host genotype, parasite genotype, and parasite microbiome composition. We observed constitutive differences in the microbiome of sticklebacks of different origin, and those differences increased when sticklebacks exposed to the parasite resisted infection. In contrast, the microbiome of successfully infected sticklebacks varied with parasite genotype. More specifically, we revealed that the association between microbiome and immune gene expression increased in infected individuals and varied with parasite genotype. In addition, we showed that S. solidus hosts a complex endomicrobiome and that bacterial abundance in the parasite correlates with expression of host immune genes. Within this comprehensive analysis we demonstrated that (i) parasites contribute to modulating the host microbiome through both successful and unsuccessful infection, (ii) when infection is successful, the host microbiome varies with parasite genotype due to genotype-dependent variation in parasite immunomodulation, and (iii) the parasite-associated microbiome is distinct from its host and impacts the host immune response to infection.


Asunto(s)
Cestodos , Infecciones por Cestodos , Enfermedades de los Peces , Microbiota , Parásitos , Smegmamorpha , Animales , Cestodos/genética , Infecciones por Cestodos/genética , Infecciones por Cestodos/parasitología , Enfermedades de los Peces/genética , Enfermedades de los Peces/parasitología , Genotipo , Interacciones Huésped-Parásitos/genética , Microbiota/genética , Fenotipo , Smegmamorpha/genética , Smegmamorpha/parasitología
3.
Proc Biol Sci ; 288(1959): 20211758, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34547906

RESUMEN

Epidemiological traits of host-parasite associations depend on the effects of the host, the parasite and their interaction. Parasites evolve mechanisms to infect and exploit their hosts, whereas hosts evolve mechanisms to prevent infection and limit detrimental effects. The reasons why and how these traits differ across populations still remain unclear. Using experimental cross-infection of three-spined stickleback Gasterosteus aculeatus and their species-specific cestode parasites Schistocephalus solidus from Alaskan and European populations, we disentangled host, parasite and interaction effects on epidemiological traits at different geographical scales. We hypothesized that host and parasite main effects would dominate both within and across continents, although interaction effects would show geographical variation of natural selection within and across continents. We found that mechanisms preventing infection (qualitative resistance) occurred only in a combination of hosts and parasites from different continents, while mechanisms limiting parasite burden (quantitative resistance) and reducing detrimental effects of infection (tolerance) were host-population specific. We conclude that evolution favours distinct defence mechanisms on different geographical scales and that it is important to distinguish concepts of qualitative resistance, quantitative resistance and tolerance in studies of macroparasite infections.


Asunto(s)
Cestodos , Infecciones por Cestodos , Enfermedades de los Peces , Parásitos , Smegmamorpha , Animales , Infecciones por Cestodos/veterinaria , Interacciones Huésped-Parásitos
4.
J Infect Dis ; 221(4): 636-646, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31745552

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) infection causes significant morbidity in hematopoietic cell transplant (HCT) recipients. However, antibody responses that correlate with recovery from RSV disease are not fully understood. METHODS: In this study, antibody repertoire in paired serum and nasal wash samples from acutely RSV-A-infected HCT recipients who recovered early (<14 days of RSV shedding) were compared with late-recovered patients (≥14 days of shedding) using gene fragment phage display libraries and surface plasmon resonance. RESULTS: Anti-F serum responses were similar between these 2 groups for antibody repertoires, neutralization titers, anti-F binding antibodies (prefusion and postfusion proteins), antibody avidity, and binding to specific antigenic sites. In contrast, nasal washes from early-recovered individuals demonstrated higher binding to F peptide containing p27. While the serum RSV G antibody repertoires in the 2 groups were similar, the strongest difference between early-recovered and late-recovered patients was observed in the titers of nasal wash antibodies, especially binding to the central conserved domain. Most importantly, a significantly higher antibody affinity to RSV G was observed in nasal washes from early-recovered individuals compared with late-recovered HCT recipients. CONCLUSIONS: These findings highlight the importance of mucosal antibodies in resolution of RSV-A infection in the upper respiratory tract.


Asunto(s)
Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Trasplante de Células Madre Hematopoyéticas , Mucosa Respiratoria/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Receptores de Trasplantes , Proteínas del Envoltorio Viral/inmunología , Anticuerpos Neutralizantes/sangre , Afinidad de Anticuerpos , Humanos , Inmunoglobulina G/inmunología , Idiotipos de Inmunoglobulinas/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Proteínas Virales de Fusión/inmunología , Esparcimiento de Virus
5.
J Virol ; 93(9)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30760574

RESUMEN

The complete genome sequence of an RNA virus was assembled from RNA sequencing of virus particles purified from threespine stickleback intestine tissue samples. This new virus is most closely related to the Eel picornavirus and can be assigned to the genus Potamipivirus in the family Picornaviridae Its unique genetic properties are enough to establish a new species, dubbed the Threespine Stickleback picornavirus (TSPV). Due to their broad geographic distribution throughout the Northern Hemisphere and parallel adaptation to freshwater, threespine sticklebacks have become a model in evolutionary ecology. Further analysis using diagnostic PCRs revealed that TSPV is highly prevalent in both anadromous and freshwater populations of threespine sticklebacks, infects almost all fish tissues, and is transmitted vertically to offspring obtained from in vitro fertilization in laboratory settings. Finally, TSPV was found in Sequence Reads Archives of transcriptome of Gasterosteus aculeatus, further demonstrating its wide distribution and unsought prevalence in samples. It is thus necessary to test the impact of TSPV on the biology of threespine sticklebacks, as this widespread virus could interfere with the behavioral, physiological, or immunological studies that employ this fish as a model system.IMPORTANCE The threespine stickleback species complex is an important model system in ecological and evolutionary studies because of the large number of isolated divergent populations that are experimentally tractable. For similar reasons, its coevolution with the cestode parasite Schistocephalus solidus, its interaction with gut microbes, and the evolution of its immune system are of growing interest. Herein we describe the discovery of an RNA virus that infects both freshwater and anadromous populations of sticklebacks. We show that the virus is transmitted vertically in laboratory settings and found it in Sequence Reads Archives, suggesting that experiments using sticklebacks were conducted in the presence of the virus. This discovery can serve as a reminder that the presence of viruses in wild-caught animals is possible, even when animals appear healthy. Regarding threespine sticklebacks, the impact of Threespine Stickleback picornavirus (TSPV) on the fish biology should be investigated further to ensure that it does not interfere with experimental results.


Asunto(s)
Enfermedades de los Peces , Genoma Viral , Perciformes/virología , Picornaviridae , Animales , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/genética , Enfermedades de los Peces/transmisión , Enfermedades de los Peces/virología , Picornaviridae/patogenicidad , Picornaviridae/fisiología , Prevalencia
6.
J Virol ; 93(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30728266

RESUMEN

Memory B cells (MBCs) are key determinants of the B cell response to influenza virus infection and vaccination, but the effect of different forms of influenza antigen exposure on MBC populations has received little attention. We analyzed peripheral blood mononuclear cells and plasma collected following human H3N2 influenza infection to investigate the relationship between hemagglutinin-specific antibody production and changes in the size and character of hemagglutinin-reactive MBC populations. Infection produced increased concentrations of plasma IgG reactive to the H3 head of the infecting virus, to the conserved stalk, and to a broad chronological range of H3s consistent with original antigenic sin responses. H3-reactive IgG MBC expansion after infection included reactivity to head and stalk domains. Notably, expansion of H3 head-reactive MBC populations was particularly broad and reflected original antigenic sin patterns of IgG production. Findings also suggest that early-life H3N2 infection "imprints" for strong H3 stalk-specific MBC expansion. Despite the breadth of MBC expansion, the MBC response included an increase in affinity for the H3 head of the infecting virus. Overall, our findings indicate that H3-reactive MBC expansion following H3N2 infection is consistent with maintenance of response patterns established early in life, but nevertheless includes MBC adaptation to the infecting virus.IMPORTANCE Rapid and vigorous virus-specific antibody responses to influenza virus infection and vaccination result from activation of preexisting virus-specific memory B cells (MBCs). Understanding the effects of different forms of influenza virus exposure on MBC populations is therefore an important guide to the development of effective immunization strategies. We demonstrate that exposure to the influenza hemagglutinin via natural infection enhances broad protection through expansion of hemagglutinin-reactive MBC populations that recognize head and stalk regions of the molecule. Notably, we show that hemagglutinin-reactive MBC expansion reflects imprinting by early-life infection and that this might apply to stalk-reactive, as well as to head-reactive, MBCs. Our findings provide experimental support for the role of MBCs in maintaining imprinting effects and suggest a mechanism by which imprinting might confer heterosubtypic protection against avian influenza viruses. It will be important to compare our findings to the situation after influenza vaccination.


Asunto(s)
Linfocitos B/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Memoria Inmunológica , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Estaciones del Año , Anticuerpos Antivirales/inmunología , Humanos , Inmunoglobulina G/inmunología , Subtipo H1N1 del Virus de la Influenza A
7.
J Virol ; 92(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29167344

RESUMEN

The fifth wave of A(H7N9) virus infection in China from 2016 to 2017 caused great concern due to the large number of individuals infected, the isolation of drug-resistant viruses, and the emergence of highly pathogenic strains. Antibodies against neuraminidase (NA) provide added benefit to hemagglutinin-specific immunity and may be important contributors to the effectiveness of A(H7N9) vaccines. We generated a panel of mouse monoclonal antibodies (MAbs) to identify antigenic domains on NA of the novel A(H7N9) virus and compared their functional properties. The loop formed in the region of residue 250 (250 loop) and the domain formed by the loops containing residues 370, 400, and 430 were identified as major antigenic regions. MAbs 1E8, 2F6, 10F4, and 11B2, which recognize these two antigenic domains, were characterized in depth. These four MAbs differ in their abilities to inhibit cleavage of small and large substrates (methyl-umbelliferyl-acetyl neuraminic acid [MU-NANA] and fetuin, respectively) in NA inhibition assays. 1E8 and 11B2 did not inhibit NA cleavage of either MU-NANA or fetuin, and 2F6 inhibited cleavage of fetuin alone, whereas 10F4 inhibited cleavage of both substrates. All four MAbs reduced the in vitro spread of viruses carrying either the wild-type N9 or N9 with antiviral-resistant mutations but to different degrees. These MAbs have different in vivo levels of effectiveness: 10F4 was the most effective in protecting mice against challenge with A(H7N9) virus, 2F6 was less effective, and 11B2 failed to protect BALB/c mice at the doses tested. Our study confirms that NA-specific antibodies can protect against A(H7N9) infection and suggests that in vitro properties can be used to rank antibodies with therapeutic potential.IMPORTANCE The novel A(H7N9) viruses that emerged in China in 2013 continue to infect humans, with a high fatality rate. The most recent outbreak resulted in a larger number of human cases than previous epidemic waves. Due to the absence of a licensed vaccine and the emergence of drug-resistant viruses, there is a need to develop alternative approaches to prevent or treat A(H7N9) infection. We have made a panel of mouse monoclonal antibodies (MAbs) specific for neuraminidase (NA) of A(H7N9) viruses; some of these MAbs are effective in inhibiting viruses that are resistant to antivirals used to treat A(H7N9) patients. Binding avidity, inhibition of NA activity, and plaque formation correlated with the effectiveness of these MAbs to protect mice against lethal A(H7N9) virus challenge. This study identifies in vitro measures that can be used to predict the in vivo efficacy of NA-specific antibodies, providing a way to select MAbs for further therapeutic development.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Proteínas Virales/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , China , Modelos Animales de Enfermedad , Perros , Femenino , Células HEK293 , Humanos , Subtipo H7N9 del Virus de la Influenza A , Pulmón/patología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Virus Reordenados
8.
Nature ; 459(7247): 686-9, 2009 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-19430463

RESUMEN

The photoluminescence from a variety of individual molecules and nanometre-sized crystallites is defined by large intensity fluctuations, known as 'blinking', whereby their photoluminescence turns 'on' and 'off' intermittently, even under continuous photoexcitation. For semiconductor nanocrystals, it was originally proposed that these 'off' periods corresponded to a nanocrystal with an extra charge. A charged nanocrystal could have its photoluminescence temporarily quenched owing to the high efficiency of non-radiative (for example, Auger) recombination processes between the extra charge and a subsequently excited electron-hole pair; photoluminescence would resume only after the nanocrystal becomes neutralized again. Despite over a decade of research, completely non-blinking nanocrystals have not been synthesized and an understanding of the blinking phenomenon remains elusive. Here we report ternary core/shell CdZnSe/ZnSe semiconductor nanocrystals that individually exhibit continuous, non-blinking photoluminescence. Unexpectedly, these nanocrystals strongly photoluminesce despite being charged, as indicated by a multi-peaked photoluminescence spectral shape and short lifetime. To model the unusual photoluminescence properties of the CdZnSe/ZnSe nanocrystals, we softened the abrupt confinement potential of a typical core/shell nanocrystal, suggesting that the structure is a radially graded alloy of CdZnSe into ZnSe. As photoluminescence blinking severely limits the usefulness of nanocrystals in applications requiring a continuous output of single photons, these non-blinking nanocrystals may enable substantial advances in fields ranging from single-molecule biological labelling to low-threshold lasers.

9.
ISME Commun ; 2(1): 9, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37938691

RESUMEN

The symbiont-associated (SA) environmental package is a new extension to the minimum information about any (x) sequence (MIxS) standards, established by the Parasite Microbiome Project (PMP) consortium, in collaboration with the Genomics Standard Consortium. The SA was built upon the host-associated MIxS standard, but reflects the nestedness of symbiont-associated microbiota within and across host-symbiont-microbe interactions. This package is designed to facilitate the collection and reporting of a broad range of metadata information that apply to symbionts such as life history traits, association with one or multiple host organisms, or the nature of host-symbiont interactions along the mutualism-parasitism continuum. To better reflect the inherent nestedness of all biological systems, we present a novel feature that allows users to co-localize samples, to nest a package within another package, and to identify replicates. Adoption of the MIxS-SA and of the new terms will facilitate reports of complex sampling design from a myriad of environments.

10.
Anal Bioanal Chem ; 399(1): 3-27, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20924568

RESUMEN

Nanoparticle-based contrast agents are quickly becoming valuable and potentially transformative tools for enhancing medical diagnostics for a wide range of in-vivo imaging modalities. Compared with conventional molecular-scale contrast agents, nanoparticles (NPs) promise improved abilities for in-vivo detection and potentially enhanced targeting efficiencies through longer engineered circulation times, designed clearance pathways, and multimeric binding capacities. However, NP contrast agents are not without issues. Difficulties in minimizing batch-to-batch variations and problems with identifying and characterizing key physicochemical properties that define the in-vivo fate and transport of NPs are significant barriers to the introduction of new NP materials as clinical contrast agents. This manuscript reviews the development and application of nanoparticles and their future potential to advance current and emerging clinical bioimaging techniques. A focus is placed on the application of solid, phase-separated materials, for example metals and metal oxides, and their specific application as contrast agents for in-vivo near-infrared fluorescence (NIRF) imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound (US), and photoacoustic imaging (PAI). Clinical and preclinical applications of NPs are identified for a broad spectrum of imaging applications, with commentaries on the future promise of these materials. Emerging technologies, for example multifunctional and theranostic NPs, and their potential for clinical advances are also discussed.


Asunto(s)
Medios de Contraste , Diagnóstico por Imagen/instrumentación , Nanopartículas , Animales , Medios de Contraste/química , Diagnóstico por Imagen/métodos , Humanos , Nanopartículas/química , Nanotecnología/instrumentación , Nanotecnología/métodos
11.
Luminescence ; 26(6): 390-6, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20960573

RESUMEN

UNLABELLED: Optical imaging is a cornerstone of modern oncologic research. The aim of this study is to determine the value of a new tool to enhance bioluminescent and fluorescent sensitivity for facilitating very-low-level signal detection in vivo. EXPERIMENTAL: For bioluminescent imaging experiments, a luciferase expressing breast cancer cell line with metastatic phenotype was implanted orthotopically into the mammary fat pad of mice. For fluorescent imaging experiments, near-infrared (NIR) nanoparticles were injected intratumorally and subcutaneously into mice. Images were compared in mice with and without application of the 'Gator' Mouse Suit (GMS). RESULTS: The GMS was associated with early detection and quantification of metastatic bioluminescent very-low-level signal not possible with conventional imaging strategies. Similarly, NIR nanoparticles that were undetectable in locations beyond the primary injection site could be visualized and their very-low-level signal quantifiable with the aid of the GMS. CONCLUSION: The GMS is a device which has tremendous potential for facilitating the development of bioluminescent models and fluorescent nanomaterials for translational oncologic applications.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Nanopartículas , Metástasis de la Neoplasia/diagnóstico , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Luminiscencia , Ratones , Trasplante de Neoplasias
12.
Am J Clin Pathol ; 156(3): 370-380, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34302455

RESUMEN

OBJECTIVES: The Abbot ID NOW COVID-19 assay and Quidel Sofia 2 SARS Antigen FIA are point-of-care assays that offer rapid testing for severe acute respiratory syndrome coronavirus 2 viral RNA and nucleocapsid protein, respectively. Given the utility of these devices in the field, we investigated the feasibility and safety of using the ID NOW and Sofia assays in the public health response to the coronavirus disease 2019 pandemic and in future public health emergencies. METHODS: A combination of utilization and contamination testing in addition to a review of instrument workflows was conducted. RESULTS: Utilization testing demonstrated that both tests are intuitive, associated with high user test success (85%) in our study, and could be implemented by staff after minimal training. Contamination tests revealed potential biosafety concerns due to the open design of the ID NOW instrument and the transfer mechanisms with the Sofia. When comparing the workflow of the ID NOW and the Sofia, we found that the ID NOW was more user-friendly and that the transfer technology reduces the chance of contamination. CONCLUSIONS: The ID NOW, Sofia, and other emerging point-of-care tests should be used only after careful consideration of testing workflow, biosafety risk mitigations, and appropriate staff training.


Asunto(s)
Antígenos Virales/análisis , Prueba de COVID-19 , COVID-19/diagnóstico , Pandemias , Pruebas en el Punto de Atención , SARS-CoV-2/inmunología , COVID-19/epidemiología , COVID-19/virología , Contención de Riesgos Biológicos , Seguridad de Equipos , Estudios de Factibilidad , Humanos , Medición de Riesgo , SARS-CoV-2/aislamiento & purificación
13.
Viruses ; 12(10)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33049994

RESUMEN

Broadly neutralizing monoclonal antibodies (bNAbs) against conserved domains in the influenza hemagglutinin are in clinical trials. Several next generation influenza vaccines designed to elicit such bNAbs are also in clinical development. One of the common features of the isolated bNAbs is the use of restricted IgVH repertoire. More than 80% of stem-targeting bNAbs express IgVH1-69, which may indicate genetic constraints on the evolution of such antibodies. In the current study, we evaluated a panel of influenza virus bNAbs in comparison with HIV-1 MAb 4E10 and anti-RSV MAb Palivizumab (approved for human use) for autoreactivity using 30 normal human tissues microarray and human protein (>9000) arrays. We found that several human bNAbs (CR6261, CR9114, and F2603) reacted with human tissues, especially with pituitary gland tissue. Importantly, protein array analysis identified high-affinity interaction of CR6261 with the autoantigen "Enhancer of mRNA decapping 3 homolog" (EDC3), which was not previously described. Moreover, EDC3 competed with hemagglutinin for binding to bNAb CR6261. These autoreactivity findings underscores the need for careful evaluation of such bNAbs for therapeutics and stem-based vaccines against influenza virus.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Cadenas Pesadas de Inmunoglobulina/farmacología , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Anticuerpos de Cadena Única/farmacología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/farmacología , Autoanticuerpos/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Humanos , Cadenas Pesadas de Inmunoglobulina/inmunología , Ribonucleoproteínas Nucleares Pequeñas/inmunología , Anticuerpos de Cadena Única/inmunología
14.
ISME J ; 14(7): 1755-1767, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32286546

RESUMEN

Parasitic flatworms (Neodermata) infect all vertebrates and represent a significant health and economic burden worldwide due to the debilitating diseases they cause. This study sheds light for the first time into the virome of a tapeworm by describing six novel RNA virus candidate species associated with Schistocephalus solidus, including three negative-strand RNA viruses (order Jingchuvirales, Mononegavirales, and Bunyavirales) and three double-stranded RNA viruses. Using in vitro culture of S. solidus, controlled experimental infections and field sampling, we demonstrate that five of these viruses are vertically transmitted, and persist throughout the S. solidus complex life cycle. Moreover, we show that one of the viruses, named Schistocephalus solidus rhabdovirus (SsRV1), is excreted by the parasite and transmitted to parasitized hosts indicating that it may impact S. solidus-host interactions. In addition, SsRV1 has a basal phylogenetic position relative to vertebrate rhabdoviruses suggesting that parasitic flatworms could have contributed to virus emergence. Viruses similar to four of the S. solidus viruses identified here were found in geographically distant S. solidus populations through data mining. Further studies are necessary to determine if flatworm viruses can replicate in parasitized hosts, how they contribute to parasite infection dynamics and if these viruses could be targeted for treatment of parasitic disease.


Asunto(s)
Cestodos , Enfermedades de los Peces , Smegmamorpha , Virus , Animales , Cestodos/genética , Interacciones Huésped-Parásitos , Filogenia
15.
Cell Host Microbe ; 27(2): 262-276.e4, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32053790

RESUMEN

Evolution of antibody repertoire against the Ebola virus (EBOV) proteome was characterized in an acutely infected patient receiving supportive care alone to elucidate virus-host interactions over time. Differential kinetics are observed for IgM-IgG-IgA epitope diversity, antibody binding, and affinity maturation to EBOV proteins. During acute illness, antibodies predominate to VP40 and glycoprotein (GP). At day 13 of clinical illness, a marked increase in antibody titers to most EBOV proteins and affinity maturation to GP is associated with rapid decline in viral replication and illness severity. At one year, despite undetectable virus, a diverse IgM repertoire against VP40 and GP epitopes is observed suggesting occult viral persistence. Rabbit immunization experiments identify key immunodominant sites of GP, while challenge studies in mice found these epitopes induce EBOV-neutralizing antibodies and protect against lethal EBOV challenge. This study reveals markers of viral persistence and provides promising approaches for development and evaluation of vaccines and therapeutics.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Epítopos/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/terapia , Humanos , Inmunoglobulina A/aislamiento & purificación , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulina M/aislamiento & purificación , Ratones , Proteoma/inmunología , Conejos , Sobrevivientes , Proteínas del Envoltorio Viral/inmunología , Proteínas de la Matriz Viral/inmunología , Proteínas Virales/inmunología , Vacunas Virales
16.
Nat Commun ; 10(1): 3338, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31350391

RESUMEN

Several vaccines are approved in the United States for seasonal influenza vaccination every year. Here we compare the impact of repeat influenza vaccination on hemagglutination inhibition (HI) titers, antibody binding and affinity maturation to individual hemagglutinin (HA) domains, HA1 and HA2, across vaccine platforms. Fold change in HI and antibody binding to HA1 trends higher for H1N1pdm09 and H3N2 but not against B strains in groups vaccinated with FluBlok compared with FluCelvax and Fluzone. Antibody-affinity maturation occurs against HA1 domain of H1N1pdm09, H3N2 and B following vaccination with all vaccine platforms, but not against H1N1pdm09-HA2. Importantly, prior year vaccination of subjects receiving repeat vaccinations demonstrated reduced antibody-affinity maturation to HA1 of all three influenza virus strains irrespective of the vaccine platform. This study identifies an important impact of repeat vaccination on antibody-affinity maturation following vaccination, which may contribute to lower vaccine effectiveness of seasonal influenza vaccines in humans.


Asunto(s)
Afinidad de Anticuerpos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Adolescente , Adulto , Anticuerpos Antivirales/inmunología , Niño , Preescolar , Femenino , Pruebas de Inhibición de Hemaglutinación , Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Lactante , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Gripe Humana/prevención & control , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Vacunación , Adulto Joven
17.
Nat Commun ; 10(1): 1943, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31028263

RESUMEN

Zika virus (ZIKV) outbreak in Americas led to extensive efforts to develop vaccines and ZIKV-specific diagnostics. In the current study, we use whole genome phage display library spanning the entire ZIKV genome (ZIKV-GFPDL) for in-depth immune profiling of IgG and IgM antibody repertoires in serum and urine longitudinal samples from individuals acutely infected with ZIKV. We observe a very diverse IgM immune repertoire encompassing the entire ZIKV polyprotein on day 0 in both serum and urine. ZIKV-specific IgG antibodies increase 10-fold between day 0 and day 7 in serum, but not in urine; these are highly focused on prM/E, NS1 and NS2B. Differential antibody affinity maturation is observed against ZIKV structural E protein compared with nonstructural protein NS1. Serum antibody affinity to ZIKV-E protein inversely correlates with ZIKV disease symptoms. Our study provides insight into unlinked evolution of immune response to ZIKV infection and identified unique targets for ZIKV serodiagnostics.


Asunto(s)
Anticuerpos Antivirales/sangre , Infección por el Virus Zika/inmunología , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos/fisiología , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G/sangre , Proteínas no Estructurales Virales/metabolismo , Vacunas Virales/inmunología , Virus Zika/inmunología , Infección por el Virus Zika/diagnóstico
18.
PLoS One ; 13(12): e0209200, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30562368

RESUMEN

Larus gull species have proven adaptable to urbanization and due to their generalist feeding behaviors, they provide useful opportunities to study how urban environments impact foraging behavior and host-associated microbiota. We evaluated how urbanization influenced the foraging behavior and microbiome characteristics of breeding herring gulls (Larus argentatus) at three different colonies on the east coast of the United States. Study colonies represented high, medium and low degrees of urbanization, respectively. At all colonies, gulls frequently foraged at landfills and in other urban environments, but both the use of urban environments and gull foraging metrics differed with the degree of urbanization. Gulls at the more urban colonies used urban environments more frequently, showed higher rates of site fidelity and took shorter trips. Gulls at less urban colonies used a greater diversity of habitat types and foraged offshore. We observed high microbial diversity at all colonies, though microbial diversity was highest at the least urban colony where gulls used a wider variety of foraging habitats. This suggests that gulls may acquire a wider range of bacteria when visiting a higher variety of foraging sites. Our findings highlight the influence of urban habitats on gull movements and microbiome composition and diversity during the breeding season and represent the first application of amplicon sequence variants, an objective and repeatable method of bacterial classification, to study the microbiota of a seabird species.


Asunto(s)
Conducta Apetitiva , Charadriiformes/microbiología , Conducta Alimentaria , Urbanización , Animales , Biodiversidad , ADN Bacteriano , Fenómenos Ecológicos y Ambientales , Humanos , New England , ARN Bacteriano , ARN Ribosómico 16S
19.
Front Microbiol ; 7: 1300, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27602023

RESUMEN

Until recently, parasitic infections have been primarily studied as interactions between the parasite and the host, leaving out crucial players: microbes. The recent realization that microbes play key roles in the biology of all living organisms is not only challenging our understanding of host-parasite evolution, but it also provides new clues to develop new therapies and remediation strategies. In this paper we provide a review of promising and advanced experimental organismal systems to examine the dynamic of host-parasite-microbe interactions. We address the benefits of developing new experimental models appropriate to this new research area and identify systems that offer the best promises considering the nature of the interactions among hosts, parasites, and microbes. Based on these systems, we identify key criteria for selecting experimental models to elucidate the fundamental principles of these complex webs of interactions. It appears that no model is ideal and that complementary studies should be performed on different systems in order to understand the driving roles of microbes in host and parasite evolution.

20.
Int J Nanomedicine ; 7: 351-7, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22287844

RESUMEN

PURPOSE: Photothermal therapy is an emerging cancer treatment paradigm which involves highly localized heating and killing of tumor cells, due to the presence of nanomaterials that can strongly absorb near-infrared (NIR) light. In addition to having deep penetration depths in tissue, NIR light is innocuous to normal cells. Little is known currently about the fate of nanomaterials post photothermal ablation and the implications thereof. The purpose of this investigation was to define the intratumoral fate of nanoparticles (NPs) after photothermal therapy in vivo and characterize the use of novel multidye theranostic NPs (MDT-NPs) for fractionated photothermal antitumor therapy. METHODS: The photothermal and fluorescent properties of MDT-NPs were first characterized. To investigate the fate of nanomaterials following photothermal ablation in vivo, novel MDT-NPs and a murine mammary tumor model were used. Intratumoral injection of MDT-NPs and real-time fluorescence imaging before and after fractionated photothermal therapy was performed to study the intratumoral fate of MDT-NPs. Gross tumor and histological changes were made comparing MDT-NP treated and control tumor-bearing mice. RESULTS: The dual dye-loaded mesoporous NPs (ie, MDT-NPs; circa 100 nm) retained both their NIR absorbing and NIR fluorescent capabilities after photoactivation. In vivo MDT-NPs remained localized in the intratumoral position after photothermal ablation. With fractionated photothermal therapy, there was significant treatment effect observed macroscopically (P = 0.026) in experimental tumor-bearing mice compared to control treated tumor-bearing mice. CONCLUSION: Fractionated photothermal therapy for cancer represents a new therapeutic paradigm enabled by the application of novel functional nanomaterials. MDT-NPs may advance clinical treatment of cancer by enabling fractionated real-time image guided photothermal therapy.


Asunto(s)
Hipertermia Inducida/métodos , Neoplasias Mamarias Animales/terapia , Nanopartículas/administración & dosificación , Animales , Línea Celular Tumoral , Rayos Infrarrojos , Inyecciones Intralesiones , Neoplasias Mamarias Animales/química , Neoplasias Mamarias Animales/patología , Ratones , Ratones Endogámicos BALB C , Microscopía Fluorescente , Nanopartículas/análisis , Nanopartículas/química , Distribución Aleatoria , Imagen de Cuerpo Entero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA