Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.103
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 56(12): 2773-2789.e8, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37992711

RESUMEN

Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Esclerosis Múltiple , Masculino , Femenino , Ratones , Animales , Esclerosis Múltiple/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal , Progresión de la Enfermedad , Receptores Dopaminérgicos
2.
Proc Natl Acad Sci U S A ; 121(17): e2321170121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38630724

RESUMEN

Global control of infectious diseases depends on the continuous development and deployment of diverse vaccination strategies. Currently available live-attenuated and killed virus vaccines typically take a week or longer to activate specific protection by the adaptive immunity. The mosquito-transmitted Nodamura virus (NoV) is attenuated in mice by mutations that prevent expression of the B2 viral suppressor of RNA interference (VSR) and consequently, drastically enhance in vivo production of the virus-targeting small-interfering RNAs. We reported recently that 2 d after immunization with live-attenuated VSR-disabled NoV (NoVΔB2), neonatal mice become fully protected against lethal NoV challenge and develop no detectable infection. Using Rag1-/- mice that produce no mature B and T lymphocytes as a model, here we examined the hypothesis that adaptive immunity is dispensable for the RNAi-based protective immunity activated by NoVΔB2 immunization. We show that immunization of both neonatal and adult Rag1-/- mice with live but not killed NoVΔB2 induces full protection against NoV challenge at 2 or 14 d postimmunization. Moreover, NoVΔB2-induced protective antiviral immunity is virus-specific and remains effective in adult Rag1-/- mice 42 and 90 d after a single-shot immunization. We conclude that immunization with the live-attenuated VSR-disabled RNA virus vaccine activates rapid and long-lasting protective immunity against lethal challenges by a distinct mechanism independent of the adaptive immunity mediated by B and T cells. Future studies are warranted to determine whether additional animal and human viruses attenuated by VSR inactivation induce similar protective immunity in healthy and adaptive immunity-compromised individuals.


Asunto(s)
Vacunas contra la Influenza , Vacunas Virales , Virus , Animales , Humanos , Ratones , Linfocitos T , Interferencia de ARN , Vacunas Atenuadas , Proteínas de Homeodominio , Anticuerpos Antivirales
3.
J Virol ; 98(2): e0157123, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38206036

RESUMEN

In pandemic scenarios involving novel human pathogenic viruses, it is highly desirable that vaccines induce strong neutralizing antibodies as quickly as possible. However, current vaccine strategies require multiple immunization doses to produce high titers of neutralizing antibodies and are poorly protective after a single vaccination. We therefore wished to design a vaccine candidate that would induce increased protective immune responses following the first vaccine dose. We hypothesized that antibodies against the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein could be increased by drawing upon immunity to a previous infection. We generated a fusion protein containing the influenza H1N1 PR8 virus nucleoprotein (NP) and the SARS-CoV-2 spike RBD. Mice with or without preexisting immunity to PR8 were then vaccinated with NP/RBD. We observed significantly increased SARS-CoV-2 neutralizing antibodies in mice with PR8 immunity compared to mice without preexisting PR8 immunity. Vaccination with NP/RBD protected mice from SARS-CoV-2-induced morbidity and mortality after a single dose. Additionally, we compared SARS-CoV-2 virus titers in the lungs and nasal turbinates 4 days post-challenge of mice vaccinated with NP/RBD. SARS-CoV-2 virus was detectable in the lungs and nasal turbinate of mice without preexisting PR8 immunity, while SARS-CoV-2 virus was completely undetectable in mice with preexisting PR8 immunity. We also found that CD4-positive T cells in mice with preexisting immunity to PR8 play an essential role in producing the increased antibody response against RBD. This vaccine strategy potentially can be modified to target other pathogens of concern and offers extra value in future pandemic scenarios.IMPORTANCEIncreased globalization and changes in human interactions with wild animals has increased the likelihood of the emergence of novel viruses with pandemic potential. Vaccines can be effective in preventing severe disease caused by pandemic viruses. However, it takes time to develop protective immunity via prime-boost vaccination. More effective vaccine designs should quickly induce protective immunity. We propose leveraging preexisting immunity to a different pathogen to boost protection against emerging viruses. We targeted SARS-CoV-2 as a representative pandemic virus and generated a fusion protein vaccine that combines the nucleoprotein from influenza A virus and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Our vaccine design significantly increased the production of RBD-specific antibodies in mice that had previously been exposed to influenza virus, compared to those without previous exposure. This enhanced immunity reduced SARS-CoV-2 replication in mice. Our results offer a vaccine design that could be valuable in a future pandemic setting.


Asunto(s)
Vacunas contra la COVID-19 , Vacunas contra la Influenza , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , COVID-19/inmunología , COVID-19/prevención & control , Subtipo H1N1 del Virus de la Influenza A/fisiología , Vacunas contra la Influenza/inmunología , Nucleoproteínas , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Vacunas contra la COVID-19/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control
4.
Immunity ; 44(1): 46-58, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26789921

RESUMEN

Viruses are obligate parasites and thus require the machinery of the host cell to replicate. Inhibition of host factors co-opted during active infection is a strategy hosts use to suppress viral replication and a potential pan-antiviral therapy. To define the cellular proteins and processes required for a virus during infection is thus crucial to understanding the mechanisms of virally induced disease. In this report, we generated fully infectious tagged influenza viruses and used infection-based proteomics to identify pivotal arms of cellular signaling required for influenza virus growth and infectivity. Using mathematical modeling and genetic and pharmacologic approaches, we revealed that modulation of Sec61-mediated cotranslational translocation selectively impaired glycoprotein proteostasis of influenza as well as HIV and dengue viruses and led to inhibition of viral growth and infectivity. Thus, by studying virus-human protein-protein interactions in the context of active replication, we have identified targetable host factors for broad-spectrum antiviral therapies.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Virus de la Influenza A/fisiología , Virus de la Influenza A/patogenicidad , Modelos Teóricos , Replicación Viral/fisiología , Virus del Dengue/patogenicidad , Virus del Dengue/fisiología , VIH/patogenicidad , VIH/fisiología , Humanos , Inmunoprecipitación , Espectrometría de Masas , Pliegue de Proteína , Proteómica
5.
Inorg Chem ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007761

RESUMEN

Although organic-inorganic hybrid Mn2+ halides have advanced significantly, achieving high stability and narrow-band emission remains enormously challenging owing to the weak ionic nature and soft crystal lattice of the halide structure. To address these issues, we proposed a cationic engineering strategy of long-range cation π···π stacking and C-H···π interactions to simultaneously improve the crystal structural stability and rigidity. Herein, two organic zero-dimensional (0D) manganese halide hybrids of (BACQ)2MnX4 [BACQ = 4-(butylamino)-7-chloroquinolin-1-ium; X = Cl and Br] were synthesized. (BACQ)2MnX4 display strong green-light emissions with the narrowest full width at half-maximum (fwhm) of 39 nm, which is significantly smaller than those of commercial green phosphor ß-SiAlON:Eu2+ and most of reported manganese halides. Detailed Hirshfeld surface analyses demonstrate the rigid environment around the [MnX4]2- units originating from the interactions between [BACQ]+. The rigid crystal structure weakens the electron-phonon coupling and renders narrow fwhm of these manganese halides, which is further confirmed by temperature-dependent emission spectra. Remarkably, (BACQ)2MnX4 realizes outstanding structural and luminescence stabilities in various extreme environments. Benefiting from the excellent performance, these Mn2+ halides are used to assemble light-emitting diodes with a wide color gamut of 105% of the National Television System Committee 1931 standard, showcasing the advanced applications in liquid-crystal-display backlighting.

6.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 353-362, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37148307

RESUMEN

BACKGROUND: Relapse remains the major challenge in treatment of alcohol use disorder (AUD). Aberrant decision-making has been found as important cognitive mechanism underlying relapse, but factors associated with relapse vulnerability are unclear. Here, we aim to identify potential computational markers of relapse vulnerability by investigating risky decision-making in individuals with AUD. METHODS: Forty-six healthy controls and fifty-two individuals with AUD were recruited for this study. The risk-taking propensity of these subjects was investigated using the balloon analog risk task (BART). After completion of clinical treatment, all individuals with AUD were followed up and divided into a non-relapse AUD group and a relapse AUD group according to their drinking status. RESULTS: The risk-taking propensity differed significantly among healthy controls, the non-relapse AUD group, and the relapse AUD group, and was negatively associated with the duration of abstinence in individuals with AUD. Logistic regression models showed that risk-taking propensity, as measured by the computational model, was a valid predictor of alcohol relapse, and higher risk-taking propensity was associated with greater risk of relapse to drink. CONCLUSION: Our study presents new insights into risk-taking measurement and identifies computational markers that provide prospective information for relapse to drink in individuals with AUD.


Asunto(s)
Alcoholismo , Humanos , Estudios Prospectivos , Alcoholismo/psicología , Etanol , Consumo de Bebidas Alcohólicas/psicología , Recurrencia
7.
Support Care Cancer ; 32(2): 98, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38200265

RESUMEN

PURPOSE: Breast cancer survivors face dual challenges: long-term sequelae of treatment and the risk of recurrent disease. Furthermore, obesity and a sedentary lifestyle can complicate both challenges. We aimed to assess the effect of a 12-week exercise-based weight-management program in overweight/obese breast cancer survivors. METHODS: A two-arm, single-blinded, randomized controlled trial was conducted among 60 overweight/obese, stage 0-III breast cancer survivors. During the 12-week program, the intervention group received weekly information support, fortnightly exercise prescriptions, including aerobic and resistance exercises to perform at home, and one dietary instruction. The control group received information support about weight management and exercise. Weight, body composition, and physical fitness data were collected at baseline, postintervention, and the 3-month follow-up. RESULTS: The intervention group showed significant improvements in body weight and all adiposity indices, including body mass index, waist circumference, and %body fat, in comparison with baseline (P < 0.001) and the control group (P < 0.05). Both groups showed no significant changes in fat-free mass during the 6-month period (P > 0.05). International Physical Activity Questionnaire scores and left grip strength increased significantly in the intervention group in comparison with the baseline (P < 0.01) and the control group (P < 0.05). Right grip strength, lower-body strength, and aerobic endurance showed no significant intergroup differences (P > 0.05). CONCLUSIONS: A combination of exercise prescription and weight-loss interventions yielded clinically meaningful weight loss in overweight/obese breast cancer survivors. These findings may facilitate the incorporation of home-based exercise and weight management into breast cancer treatment and survivorship care.


Asunto(s)
Carcinoma de Mama in situ , Neoplasias de la Mama , Supervivientes de Cáncer , Humanos , Femenino , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/terapia , Sobrepeso/terapia , Mama , Obesidad/terapia
8.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999010

RESUMEN

Hypochlorite (ClO-) and viscosity both affect the physiological state of mitochondria, and their abnormal levels are closely related to many common diseases. Therefore, it is vitally important to develop mitochondria-targeting fluorescent probes for the dual sensing of ClO- and viscosity. Herein, we have explored a new fluorescent probe, XTAP-Bn, which responds sensitively to ClO- and viscosity with off-on fluorescence changes at 558 and 765 nm, respectively. Because the emission wavelength gap is more than 200 nm, XTAP-Bn can effectively eliminate the signal crosstalk during the simultaneous detection of ClO- and viscosity. In addition, XTAP-Bn has several advantages, including high selectivity, rapid response, good water solubility, low cytotoxicity, and excellent mitochondrial-targeting ability. More importantly, probe XTAP-Bn is successfully employed to monitor the dynamic change in ClO- and viscosity levels in the mitochondria of living cells and zebrafish. This study not only provides a reliable tool for identifying mitochondrial dysfunction but also offers a potential approach for the early diagnosis of mitochondrial-related diseases.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Mitocondrias , Pez Cebra , Ácido Hipocloroso/análisis , Colorantes Fluorescentes/química , Animales , Mitocondrias/metabolismo , Viscosidad , Humanos , Imagen Óptica/métodos , Células HeLa
9.
J Tissue Viability ; 33(3): 405-411, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38886143

RESUMEN

BACKGROUND: The association between underweight and pressure injuries (PIs) has been established in several studies. However, there is a lack of well-designed research investigating the connection between overweight and obesity with these injuries. OBJECTIVE: This meta-analysis aims to investigate the dose-response relationship between body mass index (BMI) and the risk of PIs in adult hospitalized patients. METHODS: PubMed, Web of Science, and MEDLINE Databases were searched from inception to May 2024. Observational articles with at least three BMI categories were included in the study. BMI was defined as underweight, normal weight, overweight, and morbid obesity for the meta-analysis. The non-linear relationship between BMI and the risk of PIs in hospitalized adults was investigated using restricted cubic spline models. Fractional polynomial modeling was used. RESULTS: Eleven articles reporting at least 3 categories of BMI met the inclusion criteria, including 31,389 participants. Compared to patients with normal weight, those with underweight, obesity, and morbid obesity exhibited an increased risk of PIs, with odds ratios of 1.70 (95%CI:1.50-1.91), 1.12 (95%CI:1.02-1.24), 1.70 (95%CI:1.13-2.55), respectively. A J-shaped dose-response model was established for the relationship between PI risk and BMI (Pnon-linearity < 0.001, Plinearity = 0.745). CONCLUSION: The J-shaped dose-response pattern revealed that underweight, obesity and morbid obesity heightened the risk of PIs in hospitalized adults. Lower and higher BMI values may signify an increased risk for PIs, particularly among the elderly with lower BMI, providing valuable guidance for medical staff.


Asunto(s)
Índice de Masa Corporal , Hospitalización , Úlcera por Presión , Adulto , Humanos , Hospitalización/estadística & datos numéricos , Úlcera por Presión/epidemiología , Úlcera por Presión/etiología , Factores de Riesgo
10.
Int Wound J ; 21(4): e14621, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531355

RESUMEN

Hyperbaric oxygen therapy (HBOT) has been used in patients with diabetic foot ulcers (DFU) for many years, but its clinical efficacy is still controversial. Therefore, this study explored the efficacy of HBOT applied to DFU by means of meta-analysis. PubMed, Cochrane Library, Embase, CNKI and Wanfang databases were searched, from database inception to October 2023, and published randomised controlled trials (RCTs) of HBOT in DFU were collected. Two investigators independently screened the collected literature, extracted relevant data and assessed the quality of the literature. Review Manager 5.4 software was applied for data analysis. Twenty-nine RCTs with 1764 patients were included. According to the combined results, when compared with conventional treatment, HBOT significantly increased the complete healing rate of DFUs (46.76% vs. 24.46%, odds ratio [OR]: 2.83, 95% CI: 2.29-3.51, p < 0.00001) and decreased the amputation rate (26.03% vs. 45.00%, OR: 0.41, 95% CI: 0.18-0.95, p = 0.04), but the incidence of adverse events was significantly higher in patients (17.37% vs. 8.27%, OR: 2.49, 95% CI: 1.35-4.57, p = 0.003), whereas there was no significant difference in the mortality (6.96% vs. 12.71%, OR: 0.52, 95% CI: 0.21-1.28, p = 0.16). Our results suggest that HBOT is effective in increasing the complete healing rate and decreasing the amputation rate in patients with DFUs, but increases the incidence of adverse events, while it has no significant effect on mortality.

11.
Zhongguo Zhong Yao Za Zhi ; 49(1): 243-250, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403357

RESUMEN

This article aims to investigate the effect of Zhuyu Pills on atherosclerosis and decipher the underlying mechanism. The mouse model of atherosclerosis was induced by a high-fat diet, and the total modeling period was 12 weeks. A total of 47 ApoE~(-/-) mice successfully modeled were randomized into 5 groups, including 10 in the model group, 9 in each of low-, medium-, and high-dose(130.54, 261.08 and 522.16 mg·kg~(-1)·d~(-1), respectively) Zhuyu Pills groups, and 10 in the atorvastatin calcium(10.40 mg·kg~(-1)·d~(-1)) group. In addition, 10 C57BL/6J mice were included as the normal group. The mice in the normal group and model group were administrated with an equal volume of sterile distilled water, and those in other groups with corresponding agents by gavage once a day for 12 weeks. At the end of drug intervention, the levels of total cholesterol(TC), triglyceride(TG), high-density lipoprotein cholesterol(HDL-C), and low-density lipoprotein cholesterol(LDL-C) were measured by the biochemical method. Hematoxylin-eosin(HE) staining was employed to observe the plaque distribution in the aortic region. The serum levels of pro-inflammatory cytokines tumor necrosis factor-α(TNF-α) and interleukin(IL)-6 in M1 macrophages and anti-inflammatory cytokines IL-13 and IL-4 in M2 macrophages were determined by enzyme-linked immunosorbent assay(ELISA). The expression levels of inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1) were examined by immunofluorescence. Real-time fluorescence quantitative polymerase chain reaction(real-time PCR) was employed to measure the mRNA levels of peroxisome proliferator-activated receptor γ(PPARγ), nuclear factor-κB(NF-κB), Arg-1, and iNOS in the aorta. Western blot was employed to determine the protein levels of PPARγ and NF-κB in the aorta. The results showed that compared with the normal group, the modeling elevated the TC, TG, and LDL-C levels, lowered the HDL-C level, caused large area thickening of the aortic intima, elevated the TNF-α and IL-6 levels, lowered the IL-4 and IL-13 levels, down-regulated the mRNA and protein levels of PPARγ and Arg-1, and up-regulated the mRNA and protein levels of iNOS and NF-κB in the aorta(P<0.01). Compared with the model group, low-, medium-, and high-dose Zhuyu Pills and atorvastatin calcium lowered the TC, TG, and LDL-C levels, elevated the HDL-C level, reduced the plaque area in a concentration-dependent manner, lowered the TNF-α and IL-6 levels, elevated the IL-4 and IL-13 levels, up-regulated the mRNA and protein levels of PPARγ and Arg-1, and down-regulated the mRNA and protein levels of NF-κB and iNOS in the aorta(P<0.05 or P<0.01). In conclusion, Zhuyu Pills may play an anti-atherosclerosis role by regulating PPARγ/NF-κB signaling pathway, inhibiting the polarization of macrophages toward the M1 phenotype, promoting the polarization of macrophages toward the M2 phenotype, and improving the inflammatory microenvironment of macrophages.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , PPAR gamma/genética , Factor de Necrosis Tumoral alfa , Interleucina-6 , Interleucina-13/genética , LDL-Colesterol , Atorvastatina/farmacología , Interleucina-4 , Ratones Endogámicos C57BL , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/prevención & control , Transducción de Señal , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/genética , Placa Aterosclerótica/prevención & control , Citocinas/metabolismo , Macrófagos/metabolismo , Fenotipo , ARN Mensajero
12.
Biochem Biophys Res Commun ; 674: 170-182, 2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37423037

RESUMEN

Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with a poor prognosis. The growth of GBM cells depends on the core transcriptional apparatus, thus rendering RNA polymerase (RNA pol) complex as a candidate therapeutic target. The RNA pol II subunit B (POLR2B) gene encodes the second largest subunit of the RNA pol II (RPB2); however, its genomic status and function in GBM remain unclear. Certain GBM data sets in cBioPortal were used for investigating the genomic status and expression of POLR2B in GBM. The function of RPB2 was analyzed following knockdown of POLR2B expression by shRNA in GBM cells. The cell counting kit-8 assay and PI staining were used for cell proliferation and cell cycle analysis. A xenograft mouse model was established to analyze the function of RPB2 in vivo. RNA sequencing was performed to analyze the RPB2-regulated genes. GO and GSEA analyses were applied to investigate the RPB2-regulated gene function and associated pathways. In the present study, the genomic alteration and overexpression of the POLR2B gene was described in glioblastoma. The data indicated that knockdown of POLR2B expression suppressed tumor cell growth of glioblastoma in vitro and in vivo. The analysis further demonstrated the identification of the RPB2-regulated gene sets and highlighted the DNA damage-inducible transcript 4 gene as the downstream target of the POLR2B gene. The present study provides evidence indicating that RPB2 functions as a growth regulator in glioblastoma and could be used as a potential therapeutic target for the treatment of this disease.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/patología , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proliferación Celular/genética , Neoplasias Encefálicas/patología , ARN Interferente Pequeño/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
13.
Mol Ecol ; 32(10): 2534-2550, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36349836

RESUMEN

The Siberian roe deer (Capreolus pygargus) is a widely distributed ungulate in northeast China. Due to a series of human disturbance activities such as large-scale forest cutting, deforestation and reclamation, road construction in the past, the appearance and internal structure of forest vegetation in the habitat of Siberian roe have changed significantly. At the same time, Siberian roe population had a series of ecological adaptation responses in the face of such habitat changes. Therefore, two typical vegetation types with differences were selected in the Muling Forest, China. We used nutritional ecology and microbial metagenomic analysis techniques to compare the nutritional selection strategy and the structure and functional characteristics of faecal microbiota of Siberian roe groups in two vegetation types. The results showed that the α diversity of dietary and gut microbes of deer in Natural Forest was higher than that in Plantation Forest. However, the gut microbes of the Plantation Forest group contained more unique enzymes in the functional pathways of carbon metabolism and biosynthesis of amino acids. This study suggests that habitat type is associated with plant community composition, and contributes to changes in the intake proportions of major macronutrients by altering the availability, quality, and composition of certain edible plants. Feeding behaviour may be an important regulatory factor of gut microbiota structure and function of deer. The metabolic function of gut microbiota to different nutrients may affect the microbial community structure. Therefore, our results suggest that the gut microbes of Siberian roe may have coevolved with their diets, and reflect the adaptability of deer populations to environmental changes (e.g., vegetation type). Our study provides new insights into how spatial heterogeneity affects nutrition and microecosystems by describing the interactions among the environment, diet, and symbiotic gut microbes in wild ungulates.


Asunto(s)
Ciervos , Microbioma Gastrointestinal , Microbiota , Humanos , Animales , Ciervos/fisiología , Microbioma Gastrointestinal/genética , Bosques , Dieta/veterinaria
14.
Psychol Med ; 53(2): 351-361, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-33952359

RESUMEN

BACKGROUND: People with serious mental illness are at great risk of suicide, but little is known about the suicide rates among this population. We aimed to quantify the suicide rates among people with serious mental illness (bipolar disorder, major depression, or schizophrenia). METHODS: PubMed and Web of Science were searched to identify studies published from 1 January 1975 to 10 December 2020. We assessed English-language studies for the suicide rates among people with serious mental illness. Random-effects meta-analysis was used. Changes in follow-up time and the suicide rates were presented by a locally weighted scatter-plot smoothing (LOESS) curve. Suicide rate ratio was estimated for assessments of difference in suicide rate by sex. RESULTS: Of 5014 identified studies, 41 were included in this analysis. The pooled suicide rate was 312.8 per 100 000 person-years (95% CI 230.3-406.8). Europe was reported to have the highest pooled suicide rate of 335.2 per 100 000 person-years (95% CI 261.5-417.6). Major depression had the highest suicide rate of 534.3 per 100 000 person-years (95% CI 30.4-1448.7). There is a downward trend in suicide rate estimates over follow-up time. Excess risk of suicide in males was found [1.90 (95% CI 1.60-2.25)]. The most common suicide method was poisoning [21.9 per 100 000 person-years (95% CI 3.7-50.4)]. CONCLUSIONS: The suicide rates among people with serious mental illness were high, highlighting the requirements for increasing psychological assessment and monitoring. Further study should focus on region and age differences in suicide among this population.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Esquizofrenia , Suicidio , Masculino , Humanos , Esquizofrenia/epidemiología , Europa (Continente)
15.
Lupus ; 32(13): 1475-1485, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37906972

RESUMEN

Systemic lupus erythematosus (SLE) is an inflammatory disease caused by autoantibodies, with high morbidity and mortality. It involves multiple systems, particularly the renal, which can lead to lupus nephritis (LN); its multi-system effects have a significant impact on the physical and mental health of patients. Exosomes are vesicles that are secreted during cell activity and carry a variety of nucleic acids, proteins, and lipids. They are distributed through body fluids for cellular communication. MicroRNAs (miRNAs) are nucleic acids that are packaged within the exosome that are taken up and released in response to changes in plasma membrane structure. MiRNAs are potential participants in immune and inflammatory responses, which are transported to target cells and can inhibit gene expression in receptor cells. It has been suggested that exosomal miRNA can regulate the pathogenesis of SLE and, as such, they are of value in diagnosis and treatment. In this paper, we focus on the research progress into exosomal miRNA in SLE and inspire new directions for SLE related research.


Asunto(s)
Exosomas , Lupus Eritematoso Sistémico , Nefritis Lúpica , MicroARNs , Humanos , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/terapia , MicroARNs/genética , Exosomas/genética , Exosomas/patología , Nefritis Lúpica/diagnóstico , Nefritis Lúpica/genética , Nefritis Lúpica/terapia , Riñón/patología
16.
Soft Matter ; 19(26): 4880-4890, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37335556

RESUMEN

Potassium ions (K+) play crucial roles in many biological processes. Abnormal K+ levels in the body are usually associated with physiological disorders or diseases, and thus, developing K+-sensitive sensors/devices is of great importance for disease diagnosis and health monitoring. Herein, we report a K+-sensitive photonic crystal hydrogel (PCH) sensor with bright structural colors for efficient monitoring of serum potassium. This PCH sensor consists of a poly(acrylamide-co-N-isopropylacrylamide-co-benzo-15-crown-5-acrylamide) (PANBC) smart hydrogel with embedded Fe3O4 colloidal photonic crystals (CPCs), which could strongly diffract visible light and endow the hydrogel with brilliant structural colors. The rich 15-crown-5 (15C5) units appended on the polymer backbone could selectively bind K+ ions to form stable 2 : 1 [15C5]2/K+ supramolecular complexes. These bis-bidentate complexes served as physical crosslinkers to crosslink the hydrogel and contracted its volume, and thus reduced the lattice spacing of Fe3O4 CPCs and blue-shifted the light diffraction, and finally reported on the K+ concentrations by a color change of the PCH. Our fabricated PCH sensor possessed high K+ selectivity and pH- and thermo-sensitive response performances to K+. Most interestingly, the K+-responding PANBC PCH sensor could be conveniently regenerated via simple alternate flushing with hot/cold water due to the excellent thermosensitivity of the introduced PNIPAM moieties into the hydrogel. Such a PCH sensor provides a simple, low-cost and efficient strategy for visualized monitoring of hyperkalemia/hypokalemia, which will significantly promote the development of biosensors.


Asunto(s)
Hidrogeles , Hiperpotasemia , Hipopotasemia , Hiperpotasemia/diagnóstico , Hipopotasemia/diagnóstico , Potasio , Óptica y Fotónica
17.
Acta Pharmacol Sin ; 44(4): 710-725, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36207402

RESUMEN

C1q/tumor necrosis factor (TNF) related proteins (CTRPs) is a newly discovered adipokine family with conservative structure and ubiquitous distribution and is secreted by adipose tissues. Recently, CTRPs have attracted increasing attention due to the its wide-ranging effects upon inflammation and metabolism. To-date, 15 members of CTRPs (CTRP1-15) with the characteristic C1q domain have been characterized. Earlier in-depth phenotypic analyses of mouse models of CTRPs deficiency have also unveiled ample function of CTRPs in inflammation and metabolism. This review focuses on the rise of CTRPs, with a special emphasis on the latest discoveries with regards to the effects of the CTRP family on inflammation and metabolism as well as related diseases. We first introduced the structure of characteristic domain and polymerization of CTRPs to reveal its pleiotropic biological functions. Next, intimate association of CTRP family with inflammation and metabolism, as well as the involvement of CTRPs as nodes in complex molecular networks, were elaborated. With expanding membership of CTRP family, the information presented here provides new perspectives for therapeutic strategies to improve inflammatory and metabolic abnormalities.


Asunto(s)
Adipoquinas , Inflamación , Animales , Ratones , Adipoquinas/metabolismo , Tejido Adiposo/metabolismo , Complemento C1q , Inflamación/metabolismo
18.
Nucleic Acids Res ; 49(10): 5956-5966, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33999154

RESUMEN

Replication of the ∼30 kb-long coronavirus genome is mediated by a complex of non-structural proteins (NSP), in which NSP7 and NSP8 play a critical role in regulating the RNA-dependent RNA polymerase (RdRP) activity of NSP12. The assembly of NSP7, NSP8 and NSP12 proteins is highly dynamic in solution, yet the underlying mechanism remains elusive. We report the crystal structure of the complex between NSP7 and NSP8 of SARS-CoV-2, revealing a 2:2 heterotetrameric form. Formation of the NSP7-NSP8 complex is mediated by two distinct oligomer interfaces, with interface I responsible for heterodimeric NSP7-NSP8 assembly, and interface II mediating the heterotetrameric interaction between the two NSP7-NSP8 dimers. Structure-guided mutagenesis, combined with biochemical and enzymatic assays, further reveals a structural coupling between the two oligomer interfaces, as well as the importance of these interfaces for the RdRP activity of the NSP7-NSP8-NSP12 complex. Finally, we identify an NSP7 mutation that differentially affects the stability of the NSP7-NSP8 and NSP7-NSP8-NSP12 complexes leading to a selective impairment of the RdRP activity. Together, this study provides deep insights into the structure and mechanism for the dynamic assembly of NSP7 and NSP8 in regulating the replication of the SARS-CoV-2 genome, with important implications for antiviral drug development.


Asunto(s)
COVID-19 , ARN Polimerasa Dependiente de ARN de Coronavirus/química , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/química , Cromatografía en Gel , ARN Polimerasa Dependiente de ARN de Coronavirus/biosíntesis , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Complejos Multiproteicos , Mutagénesis , Mutación , Conformación Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Relación Estructura-Actividad , Proteínas no Estructurales Virales/genética , Replicación Viral
19.
Chem Soc Rev ; 51(18): 7752-7778, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36052828

RESUMEN

Ferroptosis is an iron-dependent, non-apoptotic form of programmed cell death driven by excessive lipid peroxidation (LPO). Mounting evidence suggests that the unique modality of cell death is involved in the development and progression of several diseases including cancer, cardiovascular diseases (CVDs), neurodegenerative disorders, etc. However, the pathogenesis and signalling pathways of ferroptosis are not fully understood, possibly due to the lack of robust tools for the highly selective and sensitive imaging of ferroptosis analytes in complex living systems. Up to now, various small-molecule fluorescent probes have been applied as promising chemosensors for studying ferroptosis through tracking the biomolecules or microenvironment-related parameters in vitro and in vivo. In this review, we comprehensively reviewed the recent development of small-molecule fluorescent probes for studying ferroptosis, with a focus on the analytes, design strategies and bioimaging applications. We also provided new insights to overcome the major challenges in this emerging field.


Asunto(s)
Ferroptosis , Muerte Celular , Colorantes Fluorescentes , Hierro/metabolismo , Peroxidación de Lípido
20.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1218-1228, 2023 Mar.
Artículo en Zh | MEDLINE | ID: mdl-37005806

RESUMEN

In this study, ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry(UPLC-Q-TOF-MS) and gas chromatography-mass spectrometry(GC-MS) were combined with non-targeted metabonomic analysis based on multivariate statistics analysis, and the content of five indicative components in nardosinone was determined and compared by UPLC. The main chemical components of Nardostachyos Radix et Rhizoma with imitative wild cultivation and wild Nardostachyos Radix et Rhizoma were comprehensively analyzed. The results of multivariate statistical analysis based on liquid chromatography-mass spectrometry(LC-MS) and GC-MS were consistent. G1 and G2 of the imitative wild cultivation group and G8-G19 of the wild group were clustered into category 1, while G7 of the wild group and G3-G6 of the imitative wild cultivation group were clustered into category 2. After removing the outlier data of G1, G2, and G7, G3-G6 of the imitative wild cultivation group were clustered into one category, and G8-G19 of the wild group were clustered into the other category. Twenty-six chemical components were identified according to the positive and negative ion modes detected by LC-MS. The content of five indicative components(VIP>1.5) was determined using UPLC, revealing that chlorogenic acid, isochlorogenic acid A, isochlorogenic acid C, linarin, nardosinone, and total content in the imitative wild cultivation group were 1.85, 1.52, 1.26, 0.90, 2.93, and 2.56 times those in the wild group, respectively. OPLS-DA based on GC-MS obtained 10 diffe-rential peaks. Among them, the relative content of α-humulene and aristolene in the imitative wild cultivation group were extremely significantly(P<0.01) and significantly(P<0.05) higher than that in the wild group, while the relative content of 7 components such as 5,6-epoxy-3-hydroxy-7-megastigmen-9-one, γ-eudesmol, and juniper camphor and 12-isopropyl-1,5,9-trimethyl-4,8,13-cyclotetrade-catriene-1,3-diol was extremely significantly(P<0.01) and significantly(P<0.05) lower than that in the wild group, respectively. Therefore, the main chemical components of the imitative wild cultivation group and wild group were basically the same. However, the content of non-volatile components in the imitative wild cultivation group was higher than that in the wild group, and the content of some volatile components was opposite. This study provides scientific data for the comprehensive evaluation of the quality of Nardostachyos Radix et Rhizoma with imitative wild cultivation and wild Nardostachyos Radix et Rhizoma.


Asunto(s)
Medicamentos Herbarios Chinos , Cromatografía de Gases y Espectrometría de Masas , Cromatografía Liquida , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA