Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Biol Cell ; 20(3): 924-36, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19056682

RESUMEN

Lrp5/6 are crucial coreceptors for Wnt/beta-catenin signaling, a pathway biochemically distinct from noncanonical Wnt signaling pathways. Here, we examined the possible participation of Lrp5/6 in noncanonical Wnt signaling. We found that Lrp6 physically interacts with Wnt5a, but that this does not lead to phosphorylation of Lrp6 or activation of the Wnt/beta-catenin pathway. Overexpression of Lrp6 blocks activation of the Wnt5a downstream target Rac1, and this effect is dependent on intact Lrp6 extracellular domains. These results suggested that the extracellular domain of Lrp6 inhibits noncanonical Wnt signaling in vitro. In vivo, Lrp6-/- mice exhibited exencephaly and a heart phenotype. Surprisingly, these defects were rescued by deletion of Wnt5a, indicating that the phenotypes resulted from noncanonical Wnt gain-of-function. Similarly, Lrp5 and Lrp6 antisense morpholino-treated Xenopus embryos exhibited convergent extension and heart phenotypes that were rescued by knockdown of noncanonical XWnt5a and XWnt11. Thus, we provide evidence that the extracellular domains of Lrp5/6 behave as physiologically relevant inhibitors of noncanonical Wnt signaling during Xenopus and mouse development in vivo.


Asunto(s)
Proteínas Relacionadas con Receptor de LDL/química , Proteínas Relacionadas con Receptor de LDL/metabolismo , Receptores de LDL/química , Receptores de LDL/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Eliminación de Gen , Corazón/embriología , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/metabolismo , Heterocigoto , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Ratones , Ratones Mutantes , Defectos del Tubo Neural/metabolismo , Oligonucleótidos Antisentido/farmacología , Fenotipo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Receptores de LDL/deficiencia , Transducción de Señal/efectos de los fármacos , Proteína Wnt-5a , Xenopus/embriología , Xenopus/metabolismo , beta Catenina/metabolismo , Proteína de Unión al GTP rac1/metabolismo
2.
Cell Stem Cell ; 5(4): 409-19, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19796621

RESUMEN

Control over progenitor proliferation and neurogenesis remains a key challenge for stem cell neurobiology and a prerequisite for successful stem cell replacement therapies for neurodegenerative diseases like Parkinson's disease (PD). Here, we examined the function of two nuclear receptors, liver X receptors (Lxralpha and beta) and their ligands, oxysterols, as regulators of cell division, ventral midbrain (VM) neurogenesis, and dopaminergic (DA) neuron development. Deletion of Lxrs reduced cell cycle progression and VM neurogenesis, resulting in decreased DA neurons at birth. Activation of Lxrs with oxysterol ligands increased the number of DA neurons in mouse embryonic stem cells (ESCs) and in wild-type but not Lxralphabeta(-/-) VM progenitor cultures. Likewise, oxysterol treatment of human ESCs (hESCs) during DA differentiation increased neurogenesis and the number of mature DA neurons, while reducing proliferating progenitors. Thus, Lxr ligands may improve current hESC replacement strategies for PD by selectively augmenting the generation of DA neurons.


Asunto(s)
Colesterol/análogos & derivados , Colesterol/farmacología , Células Madre Embrionarias/efectos de los fármacos , Mesencéfalo/citología , Neurogénesis/efectos de los fármacos , Receptores Nucleares Huérfanos/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Dopamina/metabolismo , Células Madre Embrionarias/citología , Humanos , Inmunohistoquímica , Hibridación in Situ , Receptores X del Hígado , Mesencéfalo/efectos de los fármacos , Ratones , Neurogénesis/genética , Receptores Nucleares Huérfanos/genética , Reacción en Cadena de la Polimerasa
3.
Glia ; 56(8): 809-20, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18351630

RESUMEN

The floor plate (FP), a signaling center and a structure rich in radial glia-like cells, has been traditionally thought to be devoid of neurons and neuronal progenitors. However, in the midbrain, the FP contains neurons of the dopaminergic (DA) lineage that require contact with radial glia-like cells for their induction. We, therefore, decided to explore the interaction relationship between radial glia and neurons during DA neurogenesis. Taking advantage of a novel FP radial glia-like cell culture system and retroviruses, DA neurons were lineage traced in vitro. In utero BrdU pulse-chases extensively labeled the midbrain FP and traced DA neurons both in vivo and in FP cultures. Moreover, from E9.5 to E13.5 the midbrain FP contained dividing cells only in the most apical part of the neuroepithelium, in cells identified as radial glia-like cells. We, therefore, hypothesized that midbrain FP radial glia-like cells could be DA progenitors and tested our hypothesis in vivo. Lineage tracing of DA progenitors with EGFP in Tis21-EGFP knock-in mice, and genetic fate mapping in GLAST::CreERT2/ZEG mice identified the neuroepithelium of the midbrain FP, and specifically, GLAST+ radial glia-like cells as DA progenitors. Combined, our experiments support the concept that the midbrain FP differs from other FP regions and demonstrate that FP radial glia-like cells in the midbrain are neurogenic and give rise to midbrain DA neurons.


Asunto(s)
Tipificación del Cuerpo/fisiología , Dopamina/metabolismo , Células Madre Embrionarias/citología , Mesencéfalo/citología , Neuroglía/metabolismo , Factores de Edad , Animales , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Bromodesoxiuridina/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Embrión de Mamíferos , Antagonistas de Estrógenos/farmacología , Transportador 1 de Aminoácidos Excitadores/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes Supresores de Tumor , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Proteínas Inmediatas-Precoces/genética , Mesencéfalo/embriología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/efectos de los fármacos , Embarazo , Tamoxifeno/farmacología , Proteínas Supresoras de Tumor
4.
PLoS One ; 3(10): e3517, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18953410

RESUMEN

Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differentiation of A9-10 dopaminergic (DA) precursors in vitro. However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-induced DA neuron differentiation of ventral midbrain (VM) precursor cultures, linking Wnt5a-induced differentiation with a known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E)9.5, and was restricted to the VM floor and basal plate by E11.5-E13.5. Analysis of Wnt5a-/- mice revealed a transient increase in progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1) precursor pool at E12.5. The excess NR4A2+ precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5a-/- mice also displayed a defect in (mid)brain morphogenesis, including an impairment in midbrain elongation and a rounded ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary, we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of NR4A2+ DA precursors.


Asunto(s)
Dopamina/metabolismo , Mesencéfalo/embriología , Morfogénesis/genética , Neuronas/fisiología , Proteínas Wnt/fisiología , Animales , Diferenciación Celular/genética , Polaridad Celular/genética , Polaridad Celular/fisiología , Proliferación Celular , Embrión de Mamíferos , Femenino , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Neurogénesis/genética , Neuronas/metabolismo , Embarazo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a , Proteína de Unión al GTP rac1/metabolismo
5.
Stem Cells ; 25(2): 511-9, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17038671

RESUMEN

Nurr1 is an orphan nuclear receptor required for the development of midbrain dopaminergic neurons. To better understand the molecular consequences of Nurr1 expression, we compared the transcriptomes of two independent control and Nurr1-expressing NSC lines using Affymetrix cDNA microarrays. These data reveal the regulation of genes involved in promoting cell survival (trophic/growth factors and stress response genes) and in preventing cell death (decreased caspase-3 and caspase-11 expression). We found that conditioned medium from Nurr1-expressing NSC lines enhanced the survival of midbrain dopaminergic neurons in primary cultures and that Nurr1-expressing NSC lines themselves were more resistant to oxidative stress. These findings are accompanied by a dynamic pattern of gene regulation that is consistent with a role for Nurr1 in promoting both the acquisition of brain-region-specific identity (Engrailed-1) and neuronal differentiation (tubulin beta III). Interestingly, our gene expression profiles suggested that tenascin-C was regulated by Nurr1 in developing dopaminergic neurons. This was further confirmed in vitro and in Nurr1 knockout mice where low levels of tenascin-C mRNA were observed. Analysis of tenascin-C-null mice revealed an increase in the number of Nurr1(+) cells that become tyrosine hydroxylase-positive (TH(+)) dopaminergic neurons at embryonic day 11.5, suggesting that tenascin-C normally delays the acquisition of TH by Nurr1(+) precursors. Thus, our results confirm the presence of both secreted and cell-intrinsic survival signals modulated by Nurr1 and suggest that Nurr1 is a key regulator of both survival and dopaminergic differentiation.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Neuronas/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Proteínas de Unión al ADN/genética , Dopamina/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Perfilación de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Estrés Oxidativo/efectos de los fármacos , Reproducibilidad de los Resultados , Células Madre/efectos de los fármacos , Tenascina/deficiencia , Tenascina/metabolismo , Factores de Transcripción/genética , Regulación hacia Arriba/efectos de los fármacos
6.
Stem Cells ; 23(7): 965-74, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15941856

RESUMEN

Cultures of three-dimensional aggregates of embryonic stem cells (ESCs) called embryoid bodies (EBs) provide a valuable system for analyzing molecular mechanisms that regulate differentiation of this unique cell type. Cyclin-dependent kinase inhibitor p27Kip1 (p27) becomes elevated during the differentiation of mouse ESCs (mESCs). In this study, various aspects of differentiation of EBs produced from normal and p27-deficient mESCs were analyzed to address the biological significance of this elevation. It was found that EBs lacking p27 grew significantly bigger, but this was not accompanied by detect-able abnormalities in the activities of cyclin-dependent kinases (CDKs). In most EB cells, downregulation of activating cyclins rather than upregulation of inhibiting p27 is probably responsible for lowering the activity of their CDKs. Abnormalities in the development of specific cell lineages were also observed in p27-deficient EBs. These included elimination of cells positive for cytokeratin endo-A (TROMA-I) and increased proliferation and formation of cavities originating from cells positive for Lewis-X. Our data also suggest that although two different pools of Lewis-X-expressing cells, cluster forming (ESC-like) and cavity forming (neural progenitors), normally exist in EBs, the absence of p27 leads to the enhancement of only the neural pool. No failure was found when the neurogenic capacity of p27-deficient mESCs was tested using various protein markers. Together, our data point to a dual role of p27 in mESCs, with one role being in the regulation of proliferation and the other role in establishing some other aspects of a differentiated phenotype.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Embrión de Mamíferos/fisiología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología , Animales , Western Blotting , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Regulación hacia Abajo , Citometría de Flujo , Inmunohistoquímica , Inmunoprecipitación , Antígeno Lewis X/metabolismo , Ratones , Microscopía Fluorescente , Neuronas/metabolismo , Fenotipo , Células Madre/metabolismo , Factores de Tiempo , Regulación hacia Arriba
7.
Glia ; 43(1): 47-51, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12761866

RESUMEN

Radial glia (RG) are the first glial cell type to appear in the nervous system. Their broad distribution and apparent similarity hide important brain region-specific differences that are likely to be essential for development. However, recent evidence supports the stimulating concept that in addition to their classical function as neuroblast guides, RG are neuronal precursors (Malatesta et al. Development 127:5253-5263, 2000; Miyata et al. Neuron 31:727-741, 2001; Noctor et al. Nature 409:714-720, 2001; Skogh et al. Mol Cell Neurosci 17:811-820, 2001). We propose that RG not only generate and guide newborn neurons, but could also instruct their own neuronal progeny to adopt appropriate region-specific phenotypes.


Radial glia (RG) are the first glial cell type to appear in the nervous system. Their broad distribution and apparent similarity hide important brain region-specific differences that are likely to be essential for development. However, recent evidence supports the stimulating concept that in addition to their classical function as neuroblast guides, RG are neuronal precursors (Malatesta et al. Development 127:5253-5263, 2000; Miyata et al. Neuron 31:727-741, 2001; Noctor et al. Nature 409:714-720, 2001; Skogh et al. Mol Cell Neurosci 17:811-820, 2001). We propose that RG not only generate and guide newborn neurons, but could also instruct their own neuronal progeny to adopt appropriate region-specific phenotypes. GLIA 43:47-51, 2003.


Asunto(s)
Sistema Nervioso Central/embriología , Sistema Nervioso Central/crecimiento & desarrollo , Neuroglía/citología , Neuronas/citología , Células Madre/citología , Animales , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Sistema Nervioso Central/citología , Dopamina/metabolismo , Sustancias de Crecimiento/metabolismo , Humanos , Neuroglía/fisiología , Neuronas/fisiología , Transducción de Señal/fisiología , Células Madre/fisiología
8.
Mol Cell Neurosci ; 20(2): 257-70, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12093158

RESUMEN

Valproate (VPA) and lithium have been used for many years in the treatment of manic depression. However, their mechanisms of action remain poorly understood. Recent studies suggest that lithium and VPA inhibit GSK-3beta, a serine/threonine kinase involved in the insulin and WNT signaling pathways. Inhibition of GSK-3beta by high concentrations of lithium has been shown to mimic WNT-7a signaling by inducing axonal remodeling and clustering of synapsin I in developing neurons. Here we have compared the effect of therapeutic concentrations of lithium and VPA during neuronal maturation. VPA and, to a lesser extent, lithium induce clustering of synapsin I. In addition, lithium and VPA induce similar changes in the morphology of axons by increasing growth cone size, spreading, and branching. More importantly, both mood stabilizers decrease the level of MAP-1B-P, a GSK-3beta-phosphorylated form of MAP-1B in developing neurons, suggesting that therapeutic concentrations of these mood stabilizers inhibit GSK-3beta. In vitro kinase assays show that therapeutic concentrations of VPA do not inhibit GSK-3beta but that therapeutic concentrations of lithium partially inhibit GSK-3beta activity. Our results support the idea that both mood stabilizers inhibit GSK-3beta in developing neurons through different pathways. Lithium directly inhibits GSK-3beta in contrast to VPA, which inhibits GSK-3beta indirectly by an as-yet-unknown pathway. These findings may have important implications for the development of new strategies to treat bipolar disorders.


Asunto(s)
Antimaníacos/farmacología , Axones/efectos de los fármacos , Encéfalo/efectos de los fármacos , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Diferenciación Celular/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Sinapsinas/efectos de los fármacos , Ácido Valproico/farmacología , Animales , Animales Recién Nacidos , Axones/metabolismo , Axones/ultraestructura , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Interacciones Farmacológicas/fisiología , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3 , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/metabolismo , Litio/farmacología , Ratones , Proteínas Asociadas a Microtúbulos/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/metabolismo , Fibras Nerviosas/ultraestructura , Plasticidad Neuronal/fisiología , Proteínas Proto-Oncogénicas/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sinapsinas/metabolismo , Proteínas Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA