Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 811
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(12): 2116-2131.e18, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35662412

RESUMEN

Highly transmissible Omicron variants of SARS-CoV-2 currently dominate globally. Here, we compare neutralization of Omicron BA.1, BA.1.1, and BA.2. BA.2 RBD has slightly higher ACE2 affinity than BA.1 and slightly reduced neutralization by vaccine serum, possibly associated with its increased transmissibility. Neutralization differences between sub-lineages for mAbs (including therapeutics) mostly arise from variation in residues bordering the ACE2 binding site; however, more distant mutations S371F (BA.2) and R346K (BA.1.1) markedly reduce neutralization by therapeutic antibody Vir-S309. In-depth structure-and-function analyses of 27 potent RBD-binding mAbs isolated from vaccinated volunteers following breakthrough Omicron-BA.1 infection reveals that they are focused in two main clusters within the RBD, with potent right-shoulder antibodies showing increased prevalence. Selection and somatic maturation have optimized antibody potency in less-mutated epitopes and recovered potency in highly mutated epitopes. All 27 mAbs potently neutralize early pandemic strains, and many show broad reactivity with variants of concern.


Asunto(s)
Anticuerpos Monoclonales , Vacunas contra la COVID-19/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Antivirales , COVID-19 , Vacunas contra la COVID-19/administración & dosificación , Epítopos , Humanos , Pruebas de Neutralización , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química
2.
Cell ; 185(14): 2422-2433.e13, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35772405

RESUMEN

The Omicron lineage of SARS-CoV-2, which was first described in November 2021, spread rapidly to become globally dominant and has split into a number of sublineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa's Gauteng region uncovered two new sublineages, BA.4 and BA.5, which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences, and although closely related to BA.2, they contain further mutations in the receptor-binding domain of their spikes. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by the serum from individuals vaccinated with triple doses of AstraZeneca or Pfizer vaccine compared with BA.1 and BA.2. Furthermore, using the serum from BA.1 vaccine breakthrough infections, there are, likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Pruebas de Neutralización , SARS-CoV-2/genética , Sudáfrica
3.
Cell ; 184(11): 2939-2954.e9, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33852911

RESUMEN

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations, including P.1 from Brazil, B.1.351 from South Africa, and B.1.1.7 from the UK (12, 10, and 9 changes in the spike, respectively). All have mutations in the ACE2 binding site, with P.1 and B.1.351 having a virtually identical triplet (E484K, K417N/T, and N501Y), which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine-induced antibody responses than B.1.351, suggesting that changes outside the receptor-binding domain (RBD) impact neutralization. Monoclonal antibody (mAb) 222 neutralizes all three variants despite interacting with two of the ACE2-binding site mutations. We explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Sitios de Unión , COVID-19/terapia , COVID-19/virología , Línea Celular , Humanos , Evasión Inmune , Inmunización Pasiva , Mutación , Unión Proteica , Dominios Proteicos , SARS-CoV-2/genética , Eliminación de Secuencia , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación , Vacunas/inmunología , Sueroterapia para COVID-19
4.
Cell ; 184(8): 2201-2211.e7, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33743891

RESUMEN

SARS-CoV-2 has caused over 2 million deaths in little over a year. Vaccines are being deployed at scale, aiming to generate responses against the virus spike. The scale of the pandemic and error-prone virus replication is leading to the appearance of mutant viruses and potentially escape from antibody responses. Variant B.1.1.7, now dominant in the UK, with increased transmission, harbors 9 amino acid changes in the spike, including N501Y in the ACE2 interacting surface. We examine the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination. We map the impact of N501Y by structure/function analysis of a large panel of well-characterized monoclonal antibodies. B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light-chain contacts with residue 501. However, widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Células CHO , COVID-19/epidemiología , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Pandemias , Unión Proteica , Relación Estructura-Actividad , Células Vero
5.
Cell ; 184(8): 2183-2200.e22, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33756110

RESUMEN

Antibodies are crucial to immune protection against SARS-CoV-2, with some in emergency use as therapeutics. Here, we identify 377 human monoclonal antibodies (mAbs) recognizing the virus spike and focus mainly on 80 that bind the receptor binding domain (RBD). We devise a competition data-driven method to map RBD binding sites. We find that although antibody binding sites are widely dispersed, neutralizing antibody binding is focused, with nearly all highly inhibitory mAbs (IC50 < 0.1 µg/mL) blocking receptor interaction, except for one that binds a unique epitope in the N-terminal domain. Many of these neutralizing mAbs use public V-genes and are close to germline. We dissect the structural basis of recognition for this large panel of antibodies through X-ray crystallography and cryoelectron microscopy of 19 Fab-antigen structures. We find novel binding modes for some potently inhibitory antibodies and demonstrate that strongly neutralizing mAbs protect, prophylactically or therapeutically, in animal models.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Sitios de Unión de Anticuerpos , Células CHO , Chlorocebus aethiops , Cricetulus , Epítopos , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , SARS-CoV-2/inmunología , Células Vero
6.
PLoS Biol ; 22(7): e3002698, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38950062

RESUMEN

The fitness effects of new mutations determine key properties of evolutionary processes. Beneficial mutations drive evolution, yet selection is also shaped by the frequency of small-effect deleterious mutations, whose combined effect can burden otherwise adaptive lineages and alter evolutionary trajectories and outcomes in clonally evolving organisms such as viruses, microbes, and tumors. The small effect sizes of these important mutations have made accurate measurements of their rates difficult. In microbes, assessing the effect of mutations on growth can be especially instructive, as this complex phenotype is closely linked to fitness in clonally evolving organisms. Here, we perform high-throughput time-lapse microscopy on cells from mutation-accumulation strains to precisely infer the distribution of mutational effects on growth rate in the budding yeast, Saccharomyces cerevisiae. We show that mutational effects on growth rate are overwhelmingly negative, highly skewed towards very small effect sizes, and frequent enough to suggest that deleterious hitchhikers may impose a significant burden on evolving lineages. By using lines that accumulated mutations in either wild-type or slippage repair-defective backgrounds, we further disentangle the effects of 2 common types of mutations, single-nucleotide substitutions and simple sequence repeat indels, and show that they have distinct effects on yeast growth rate. Although the average effect of a simple sequence repeat mutation is very small (approximately 0.3%), many do alter growth rate, implying that this class of frequent mutations has an important evolutionary impact.


Asunto(s)
Aptitud Genética , Repeticiones de Microsatélite , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Repeticiones de Microsatélite/genética , Mutación/genética , Acumulación de Mutaciones
7.
Nature ; 591(7848): 105-110, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33627874

RESUMEN

Animal nervous system organization is crucial for all body functions and its disruption can lead to severe cognitive and behavioural impairment1. This organization relies on features across scales-from the localization of synapses at the nanoscale, through neurons, which possess intricate neuronal morphologies that underpin circuit organization, to stereotyped connections between different regions of the brain2. The sheer complexity of this organ means that the feat of reconstructing and modelling the structure of a complete nervous system that is integrated across all of these scales has yet to be achieved. Here we present a complete structure-function model of the main neuropil in the nematode Caenorhabditis elegans-the nerve ring-which we derive by integrating the volumetric reconstructions from two animals with corresponding3 synaptic and gap-junctional connectomes. Whereas previously the nerve ring was considered to be a densely packed tract of neural processes, we uncover internal organization and show how local neighbourhoods spatially constrain and support the synaptic connectome. We find that the C. elegans connectome is not invariant, but that a precisely wired core circuit is embedded in a background of variable connectivity, and identify a candidate reference connectome for the core circuit. Using this reference, we propose a modular network architecture of the C. elegans brain that supports sensory computation and integration, sensorimotor convergence and brain-wide coordination. These findings reveal scalable and robust features of brain organization that may be universal across phyla.


Asunto(s)
Encéfalo/citología , Encéfalo/fisiología , Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Conectoma , Animales , Encéfalo/anatomía & histología , Caenorhabditis elegans/anatomía & histología , Uniones Comunicantes , Modelos Biológicos , Vías Nerviosas , Neuritas , Neurópilo/citología , Neurópilo/fisiología , Sinapsis/metabolismo
8.
PLoS Genet ; 19(11): e1011008, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37930961

RESUMEN

The cuticles of ecdysozoan animals are barriers to material loss and xenobiotic insult. Key to this barrier is lipid content, the establishment of which is poorly understood. Here, we show that the p-glycoprotein PGP-14 functions coincidently with the sphingomyelin synthase SMS-5 to establish a polar lipid barrier within the pharyngeal cuticle of the nematode C. elegans. We show that PGP-14 and SMS-5 are coincidentally expressed in the epithelium that surrounds the anterior pharyngeal cuticle where PGP-14 localizes to the apical membrane. pgp-14 and sms-5 also peak in expression at the time of new cuticle synthesis. Loss of PGP-14 and SMS-5 dramatically reduces pharyngeal cuticle staining by Nile Red, a key marker of polar lipids, and coincidently alters the nematode's response to a wide-range of xenobiotics. We infer that PGP-14 exports polar lipids into the developing pharyngeal cuticle in an SMS-5-dependent manner to safeguard the nematode from environmental insult.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Lípidos , Permeabilidad
9.
Nature ; 571(7763): 63-71, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31270481

RESUMEN

Knowledge of connectivity in the nervous system is essential to understanding its function. Here we describe connectomes for both adult sexes of the nematode Caenorhabditis elegans, an important model organism for neuroscience research. We present quantitative connectivity matrices that encompass all connections from sensory input to end-organ output across the entire animal, information that is necessary to model behaviour. Serial electron microscopy reconstructions that are based on the analysis of both new and previously published electron micrographs update previous results and include data on the male head. The nervous system differs between sexes at multiple levels. Several sex-shared neurons that function in circuits for sexual behaviour are sexually dimorphic in structure and connectivity. Inputs from sex-specific circuitry to central circuitry reveal points at which sexual and non-sexual pathways converge. In sex-shared central pathways, a substantial number of connections differ in strength between the sexes. Quantitative connectomes that include all connections serve as the basis for understanding how complex, adaptive behavior is generated.


Asunto(s)
Caenorhabditis elegans/metabolismo , Conectoma , Sistema Nervioso/anatomía & histología , Sistema Nervioso/metabolismo , Caracteres Sexuales , Animales , Conducta Animal , Caenorhabditis elegans/citología , Femenino , Cabeza/anatomía & histología , Cabeza/inervación , Organismos Hermafroditas , Masculino , Microscopía Electrónica , Actividad Motora , Movimiento , Sistema Nervioso/citología , Vías Nerviosas
11.
PLoS Genet ; 18(1): e1010016, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35089924

RESUMEN

The functional properties of neural circuits are defined by the patterns of synaptic connections between their partnering neurons, but the mechanisms that stabilize circuit connectivity are poorly understood. We systemically examined this question at synapses onto newly characterized dendritic spines of C. elegans GABAergic motor neurons. We show that the presynaptic adhesion protein neurexin/NRX-1 is required for stabilization of postsynaptic structure. We find that early postsynaptic developmental events proceed without a strict requirement for synaptic activity and are not disrupted by deletion of neurexin/nrx-1. However, in the absence of presynaptic NRX-1, dendritic spines and receptor clusters become destabilized and collapse prior to adulthood. We demonstrate that NRX-1 delivery to presynaptic terminals is dependent on kinesin-3/UNC-104 and show that ongoing UNC-104 function is required for postsynaptic maintenance in mature animals. By defining the dynamics and temporal order of synapse formation and maintenance events in vivo, we describe a mechanism for stabilizing mature circuit connectivity through neurexin-based adhesion.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Axones/metabolismo , Espinas Dendríticas/metabolismo , Terminales Presinápticos/metabolismo
12.
PLoS Genet ; 18(8): e1010348, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35960773

RESUMEN

Epithelial cells secrete apical extracellular matrices to form protruding structures such as denticles, ridges, scales, or teeth. The mechanisms that shape these structures remain poorly understood. Here, we show how the actin cytoskeleton and a provisional matrix work together to sculpt acellular longitudinal alae ridges in the cuticle of adult C. elegans. Transient assembly of longitudinal actomyosin filaments in the underlying lateral epidermis accompanies deposition of the provisional matrix at the earliest stages of alae formation. Actin is required to pattern the provisional matrix into longitudinal bands that are initially offset from the pattern of longitudinal actin filaments. These bands appear ultrastructurally as alternating regions of adhesion and separation within laminated provisional matrix layers. The provisional matrix is required to establish these demarcated zones of adhesion and separation, which ultimately give rise to alae ridges and their intervening valleys, respectively. Provisional matrix proteins shape the alae ridges and valleys but are not present within the final structure. We propose a morphogenetic mechanism wherein cortical actin patterns are relayed to the laminated provisional matrix to set up distinct zones of matrix layer separation and accretion that shape a permanent and acellular matrix structure.


Asunto(s)
Actinas , Caenorhabditis elegans , Actinas/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Citoesqueleto/genética , Matriz Extracelular/metabolismo , Morfogénesis
13.
Oncologist ; 29(9): e1228-e1230, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-38886182

RESUMEN

Colorectal cancer (CRC) is a common cancer in younger adults. In patients undergoing liver resection with RAS-altered CRCs, there is evidence suggesting younger patients have worse outcomes than older patients. To explain this pattern, differences in associations between RAS status and other cancer-related biomarkers in tumors from younger versus older patients with CRC were evaluated in a cohort of 925 patients with CRC, 277 (30.0%) of whom were ≤50 years old, and 454 (49.1%) who had RAS-altered tumors. For 3 biomarkers, RNF43, APC, and microsatellite instability (MSI), the association with RAS status was significantly modified by age after adjustment for multiple testing. Specifically, younger patients with RAS-altered tumors were more likely to be MSI-high, RNF43 mutated, and APC wild type. These differences might contribute to the observed pattern of diminished survival in younger versus older patients with CRC with RAS-mutated tumors undergoing liver metastasis resection.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Inestabilidad de Microsatélites , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/cirugía , Neoplasias Colorrectales/mortalidad , Masculino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Persona de Mediana Edad , Femenino , Adulto , Anciano , Mutación , Factores de Edad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Pronóstico , Proteína de la Poliposis Adenomatosa del Colon/genética
14.
N Engl J Med ; 385(26): 2431-2440, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34936739

RESUMEN

BACKGROUND: Generalized pustular psoriasis (GPP) is a rare, life-threatening, inflammatory skin disease characterized by widespread eruption of sterile pustules. Interleukin-36 signaling is involved in the pathogenesis of this disorder. Spesolimab, a humanized anti-interleukin-36 receptor monoclonal antibody, is being studied for the treatment of GPP flares. METHODS: In a phase 2 trial, we randomly assigned patients with a GPP flare in a 2:1 ratio to receive a single 900-mg intravenous dose of spesolimab or placebo. Patients in both groups could receive an open-label dose of spesolimab on day 8, an open-label dose of spesolimab as a rescue medication after day 8, or both and were followed to week 12. The primary end point was a Generalized Pustular Psoriasis Physician Global Assessment (GPPGA) pustulation subscore of 0 (range, 0 [no visible pustules] to 4 [severe pustulation]) at the end of week 1. The key secondary end point was a GPPGA total score of 0 or 1 (clear or almost clear skin) at the end of week 1; scores range from 0 to 4, with higher scores indicating greater disease severity. RESULTS: A total of 53 patients were enrolled: 35 were assigned to receive spesolimab and 18 to receive placebo. At baseline, 46% of the patients in the spesolimab group and 39% of those in the placebo group had a GPPGA pustulation subscore of 3, and 37% and 33%, respectively, had a pustulation subscore of 4. At the end of week 1, a total of 19 of 35 patients (54%) in the spesolimab group had a pustulation subscore of 0, as compared with 1 of 18 patients (6%) in the placebo group (difference, 49 percentage points; 95% confidence interval [CI], 21 to 67; P<0.001). A total of 15 of 35 patients (43%) had a GPPGA total score of 0 or 1, as compared with 2 of 18 patients (11%) in the placebo group (difference, 32 percentage points; 95% CI, 2 to 53; P = 0.02). Drug reactions were reported in 2 patients who received spesolimab, in 1 of them concurrently with a drug-induced hepatic injury. Among patients assigned to the spesolimab group, infections occurred in 6 of 35 (17%) through the first week; among patients who received spesolimab at any time in the trial, infections had occurred in 24 of 51 (47%) at week 12. Antidrug antibodies were detected in 23 of 50 patients (46%) who received at least one dose of spesolimab. CONCLUSIONS: In a phase 2 randomized trial involving patients with GPP, the interleukin-36 receptor inhibitor spesolimab resulted in a higher incidence of lesion clearance at 1 week than placebo but was associated with infections and systemic drug reactions. Longer and larger trials are warranted to determine the effect and risks of spesolimab in patients with pustular psoriasis. (Funded by Boehringer Ingelheim; Effisayil 1 ClinicalTrials.gov number, NCT03782792.).


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Psoriasis/tratamiento farmacológico , Receptores de Interleucina/antagonistas & inhibidores , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Método Doble Ciego , Femenino , Humanos , Inyecciones Intravenosas , Masculino , Persona de Mediana Edad , Placebos/efectos adversos , Placebos/uso terapéutico , Índice de Severidad de la Enfermedad , Brote de los Síntomas
15.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34195824

RESUMEN

The C. elegans germline is organized as a syncytium in which each germ cell possesses an intercellular bridge that is maintained by a stable actomyosin ring and connected to a common pool of cytoplasm, termed the rachis. How germ cells undergo cytokinesis while maintaining this syncytial architecture is not completely understood. Here, we use live imaging to characterize primordial germ cell (PGC) division in C. elegans first-stage larvae. We show that each PGC possesses a stable intercellular bridge that connects it to a common pool of cytoplasm, which we term the proto-rachis. We further show that the first PGC cytokinesis is incomplete and that the stabilized cytokinetic ring progressively moves towards the proto-rachis and eventually integrates with it. Our results support a model in which the initial expansion of the C. elegans syncytial germline occurs by incomplete cytokinesis, where one daughter germ cell inherits the actomyosin ring that was newly formed by stabilization of the cytokinetic ring, while the other inherits the pre-existing stable actomyosin ring. We propose that such a mechanism of iterative cytokinesis incompletion underpins C. elegans germline expansion and maintenance.


Asunto(s)
Caenorhabditis elegans/citología , Citocinesis/fisiología , Células Germinativas/citología , Citoesqueleto de Actina/fisiología , Actomiosina/fisiología , Animales , Citoplasma/fisiología , Células Gigantes/fisiología
16.
New Phytol ; 242(5): 2353-2368, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38515228

RESUMEN

Evolutionary radiation, a pivotal aspect of macroevolution, offers valuable insights into evolutionary processes. The genus Pinus is the largest genus in conifers with c . 90% of the extant species emerged in the Miocene, which signifies a case of rapid diversification. Despite this remarkable history, our understanding of the mechanisms driving radiation within this expansive genus has remained limited. Using exome capture sequencing and a fossil-calibrated phylogeny, we investigated the divergence history, niche diversification, and introgression among 13 closely related Eurasian species spanning climate zones from the tropics to the boreal Arctic. We detected complex introgression among lineages in subsection Pinus at all stages of the phylogeny. Despite this widespread gene exchange, each species maintained its genetic identity and showed clear niche differentiation. Demographic analysis unveiled distinct population histories among these species, which further influenced the nucleotide diversity and efficacy of purifying and positive selection in each species. Our findings suggest that radiation in the Eurasian pines was likely fueled by interspecific recombination and further reinforced by their adaptation to distinct environments. Our study highlights the constraints and opportunities for evolutionary change, and the expectations of future adaptation in response to environmental changes in different lineages.


Asunto(s)
Flujo Génico , Filogenia , Pinus , Pinus/genética , Pinus/efectos de la radiación , Evolución Biológica , Variación Genética , Especificidad de la Especie , Europa (Continente) , Especiación Genética
17.
New Phytol ; 243(3): 1231-1246, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38308133

RESUMEN

Scots pine is the foundation species of diverse forested ecosystems across Eurasia and displays remarkable ecological breadth, occurring in environments ranging from temperate rainforests to arid tundra margins. Such expansive distributions can be favored by various demographic and adaptive processes and the interactions between them. To understand the impact of neutral and selective forces on genetic structure in Scots pine, we conducted range-wide population genetic analyses on 2321 trees from 202 populations using genotyping-by-sequencing, reconstructed the recent demography of the species and examined signals of genetic adaptation. We found a high and uniform genetic diversity across the entire range (global FST 0.048), no increased genetic load in expanding populations and minor impact of the last glacial maximum on historical population sizes. Genetic-environmental associations identified only a handful of single-nucleotide polymorphisms significantly linked to environmental gradients. The results suggest that extensive gene flow is predominantly responsible for the observed genetic patterns in Scots pine. The apparent missing signal of genetic adaptation is likely attributed to the intricate genetic architecture controlling adaptation to multi-dimensional environments. The panmixia metapopulation of Scots pine offers a good study system for further exploration into how genetic adaptation and plasticity evolve under gene flow and changing environment.


Asunto(s)
Adaptación Fisiológica , Variación Genética , Pinus sylvestris , Pinus sylvestris/genética , Pinus sylvestris/fisiología , Adaptación Fisiológica/genética , Polimorfismo de Nucleótido Simple/genética , Flujo Génico , Genética de Población , Geografía
18.
Plant Physiol ; 191(3): 1818-1835, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36635853

RESUMEN

Understanding the regulation of photosynthetic light harvesting and electron transfer is of great importance to efforts to improve the ability of the electron transport chain to supply downstream metabolism. A central regulator of the electron transport chain is ATP synthase, the molecular motor that harnesses the chemiosmotic potential generated from proton-coupled electron transport to synthesize ATP. ATP synthase is regulated both thermodynamically and post-translationally, with proposed phosphorylation sites on multiple subunits. In this study we focused on two N-terminal serines on the catalytic subunit ß in tobacco (Nicotiana tabacum), previously proposed to be important for dark inactivation of the complex to avoid ATP hydrolysis at night. Here we show that there is no clear role for phosphorylation in the dark inactivation of ATP synthase. Instead, mutation of one of the two phosphorylated serine residues to aspartate to mimic constitutive phosphorylation strongly decreased ATP synthase abundance. We propose that the loss of N-terminal phosphorylation of ATPß may be involved in proper ATP synthase accumulation during complex assembly.


Asunto(s)
ATPasas de Translocación de Protón de Cloroplastos , Fotosíntesis , ATPasas de Translocación de Protón de Cloroplastos/genética , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Fosforilación , Fotosíntesis/genética , Transporte de Electrón , Adenosina Trifosfato/metabolismo
19.
Respiration ; : 1-15, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39033746

RESUMEN

The use and availability of diverse advanced X-ray based imaging and guidance systems in the field of interventional pulmonology are rapidly growing. This popularity links inextricably to an increase in ionizing radiation use. Knowing ionizing radiation is hazardous, knowledge and competent use of X-ray imaging and guidance systems are important. The globally implemented As Low As Reasonably Achievable (ALARA) principle demands careful attention to minimize radiation exposure while achieving the precise goals of the intervention and imaging therein. To allow careful and targeted weighing of risk against reward while using X-ray based equipment, proper background knowledge of physics as well as imaging system aspects are needed. This white paper summarizes the principles of ionizing radiation which are crucial to enhance awareness and interpretation of dosimetric quantities. Consecutively, a consensus on standards for reporting radiation exposure in interventional pulmonology procedures is indicated to facilitate comparisons between different systems, approaches and results. Last but not least, it provides a list of practical measures, considerations and tips to optimize procedural imaging as well as reduce radiation dose to patients and staff.

20.
J Dairy Sci ; 107(9): 6945-6970, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38788837

RESUMEN

An economic simulation was carried out over 183 milk-producing countries to estimate the global economic impacts of 12 dairy cattle diseases and health conditions: mastitis (subclinical and clinical), lameness, paratuberculosis (Johne's disease), displaced abomasum, dystocia, metritis, milk fever, ovarian cysts, retained placenta, and ketosis (subclinical and clinical). Estimates of disease impacts on milk yield, fertility, and culling were collected from the literature, standardized, meta-analyzed using a variety of methods ranging from simple averaging to random-effects models, and adjusted for comorbidities to prevent overestimation. These comorbidity-adjusted disease impacts were then combined with a set of country-level estimates for lactational incidence or prevalence or both, herd characteristics, and price estimates within a series of Monte Carlo simulations that estimated and valued the economic losses due to these diseases. It was estimated that total annual global losses are US$65 billion (B). Subclinical ketosis, clinical mastitis, and subclinical mastitis were the costliest diseases modeled, resulting in mean annual global losses of approximately US$18B, US$13B, and US$9B, respectively. Estimated global annual losses due to clinical ketosis, displaced abomasum, dystocia, lameness, metritis, milk fever, ovarian cysts, paratuberculosis, and retained placenta were estimated to be US$0.2B, US$0.6B, US$0.6B, US$6B, US$5B, US$0.6B, US$4B, US$4B, and US$3B, respectively. Without adjustment for comorbidities, when statistical associations between diseases were disregarded, mean aggregate global losses would have been overestimated by 45%. Although annual losses were greatest in India (US$12B), the United States (US$8B), and China (US$5B), depending on the measure of losses used (losses as a percentage of gross domestic product, losses per capita, losses as a percentage of gross milk revenue), the relative economic burden of these dairy cattle diseases across countries varied markedly.


Asunto(s)
Enfermedades de los Bovinos , Industria Lechera , Mastitis Bovina , Bovinos , Animales , Enfermedades de los Bovinos/economía , Enfermedades de los Bovinos/epidemiología , Femenino , Industria Lechera/economía , Mastitis Bovina/economía , Mastitis Bovina/epidemiología , Leche/economía , Lactancia , Comorbilidad , Cetosis/veterinaria , Cetosis/economía , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA