Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 184(18): 4680-4696.e22, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34380047

RESUMEN

Mutations causing amyotrophic lateral sclerosis (ALS) often affect the condensation properties of RNA-binding proteins (RBPs). However, the role of RBP condensation in the specificity and function of protein-RNA complexes remains unclear. We created a series of TDP-43 C-terminal domain (CTD) variants that exhibited a gradient of low to high condensation propensity, as observed in vitro and by nuclear mobility and foci formation. Notably, a capacity for condensation was required for efficient TDP-43 assembly on subsets of RNA-binding regions, which contain unusually long clusters of motifs of characteristic types and density. These "binding-region condensates" are promoted by homomeric CTD-driven interactions and required for efficient regulation of a subset of bound transcripts, including autoregulation of TDP-43 mRNA. We establish that RBP condensation can occur in a binding-region-specific manner to selectively modulate transcriptome-wide RNA regulation, which has implications for remodeling RNA networks in the context of signaling, disease, and evolution.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Regiones no Traducidas 3'/genética , Secuencia de Bases , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , Mutación/genética , Motivos de Nucleótidos/genética , Transición de Fase , Mutación Puntual/genética , Poli A/metabolismo , Unión Proteica , Multimerización de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eliminación de Secuencia
2.
Nature ; 603(7899): 131-137, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35197628

RESUMEN

Variants of UNC13A, a critical gene for synapse function, increase the risk of amyotrophic lateral sclerosis and frontotemporal dementia1-3, two related neurodegenerative diseases defined by mislocalization of the RNA-binding protein TDP-434,5. Here we show that TDP-43 depletion induces robust inclusion of a cryptic exon in UNC13A, resulting in nonsense-mediated decay and loss of UNC13A protein. Two common intronic UNC13A polymorphisms strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia risk overlap with TDP-43 binding sites. These polymorphisms potentiate cryptic exon inclusion, both in cultured cells and in brains and spinal cords from patients with these conditions. Our findings, which demonstrate a genetic link between loss of nuclear TDP-43 function and disease, reveal the mechanism by which UNC13A variants exacerbate the effects of decreased TDP-43 function. They further provide a promising therapeutic target for TDP-43 proteinopathies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Proteinopatías TDP-43 , Empalme Alternativo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Codón sin Sentido , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Proteínas del Tejido Nervioso , Polimorfismo de Nucleótido Simple/genética
4.
EMBO J ; 37(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29764981

RESUMEN

TDP-43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP-43 function at physiological levels both in vitro and in vivo Interestingly, we find that mutations within the C-terminal domain of TDP-43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP-43 loss- and gain-of-function effects. TDP-43 gain-of-function effects in these mice reveal a novel category of splicing events controlled by TDP-43, referred to as "skiptic" exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain-of-function mutation in endogenous Tardbp causes an adult-onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain-of-function and skiptic exons in ALS patient-derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP-43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/genética , Proteínas de Unión al ARN/genética , Empalme Alternativo/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Exones/genética , Humanos , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación , Empalme del ARN/genética
5.
EMBO J ; 34(5): 653-68, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25599992

RESUMEN

Matrin3 is an RNA- and DNA-binding nuclear matrix protein found to be associated with neural and muscular degenerative diseases. A number of possible functions of Matrin3 have been suggested, but no widespread role in RNA metabolism has yet been clearly demonstrated. We identified Matrin3 by its interaction with the second RRM domain of the splicing regulator PTB. Using a combination of RNAi knockdown, transcriptome profiling and iCLIP, we find that Matrin3 is a regulator of hundreds of alternative splicing events, principally acting as a splicing repressor with only a small proportion of targeted events being co-regulated by PTB. In contrast to other splicing regulators, Matrin3 binds to an extended region within repressed exons and flanking introns with no sharply defined peaks. The identification of this clear molecular function of Matrin3 should help to clarify the molecular pathology of ALS and other diseases caused by mutations of Matrin3.


Asunto(s)
Empalme Alternativo/fisiología , Redes Reguladoras de Genes/fisiología , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo/genética , Biología Computacional , Cartilla de ADN/genética , Electroforesis en Gel de Poliacrilamida , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Células HEK293 , Células HeLa , Humanos , Análisis por Micromatrices , Interferencia de ARN , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Nucleic Acids Res ; 44(18): 8933-8950, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27317697

RESUMEN

Alternative splicing (AS) is a key component of gene expression programs that drive cellular differentiation. Smooth muscle cells (SMCs) are important in the function of a number of physiological systems; however, investigation of SMC AS has been restricted to a handful of events. We profiled transcriptome changes in mouse de-differentiating SMCs and observed changes in hundreds of AS events. Exons included in differentiated cells were characterized by particularly weak splice sites and by upstream binding sites for Polypyrimidine Tract Binding protein (PTBP1). Consistent with this, knockdown experiments showed that that PTBP1 represses many smooth muscle specific exons. We also observed coordinated splicing changes predicted to downregulate the expression of core components of U1 and U2 snRNPs, splicing regulators and other post-transcriptional factors in differentiated cells. The levels of cognate proteins were lower or similar in differentiated compared to undifferentiated cells. However, levels of snRNAs did not follow the expression of splicing proteins, and in the case of U1 snRNP we saw reciprocal changes in the levels of U1 snRNA and U1 snRNP proteins. Our results suggest that the AS program in differentiated SMCs is orchestrated by the combined influence of auxiliary RNA binding proteins, such as PTBP1, along with altered activity and stoichiometry of the core splicing machinery.


Asunto(s)
Empalme Alternativo , Miocitos del Músculo Liso/metabolismo , Procesamiento Postranscripcional del ARN , Animales , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Exones , Perfilación de la Expresión Génica , Intrones , Ratones , Miocitos del Músculo Liso/citología , Motivos de Nucleótidos , Factores de Empalme de ARN/metabolismo , Estabilidad del ARN , ARN Nuclear Pequeño/genética , Ratas
7.
Sci Transl Med ; 16(734): eadg7162, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38277467

RESUMEN

Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/genética , Péptidos , Proteómica
8.
Life Sci Alliance ; 6(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37438085

RESUMEN

An intronic GGGGCC repeat expansion in C9orf72 is a common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. The repeats are transcribed in both sense and antisense directions to generate distinct dipeptide repeat proteins, of which poly(GA), poly(GR), and poly(PR) have been implicated in contributing to neurodegeneration. Poly(PR) binding to RNA may contribute to toxicity, but analysis of poly(PR)-RNA binding on a transcriptome-wide scale has not yet been carried out. We therefore performed crosslinking and immunoprecipitation (CLIP) analysis in human cells to identify the RNA binding sites of poly(PR). We found that poly(PR) binds to nearly 600 RNAs, with the sequence GAAGA enriched at the binding sites. In vitro experiments showed that poly(GAAGA) RNA binds poly(PR) with higher affinity than control RNA and induces the phase separation of poly(PR) into condensates. These data indicate that poly(PR) preferentially binds to poly(GAAGA)-containing RNAs, which may have physiological consequences.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Transcriptoma/genética , Proteína C9orf72/genética , Poli A , Dipéptidos , ARN/genética
9.
RNA ; 16(4): 839-51, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20197377

RESUMEN

Splicing of vertebrate introns involves recognition of three consensus elements at the 3' end. The branch point (BP) and polypyrimidine tract (PPT) are usually located within 40 nucleotides (nt) of the 3' splice site (3' ss), AG, but can be much more distant. A characteristic of the region between distant BPs (dBPs) and the 3' ss is the absence of intervening AG dinucleotides, leading to its designation as the "AG exclusion zone" (AGEZ). The human HTR4 gene, which encodes serotonin receptor 4 and has been associated with schizophrenia, bipolar disease, and gastrointestinal disorders, has four exons with extensive AGEZs. We have mapped the BPs for HTR4 exons 3, 4, 5, and g generated by in vitro splicing, and validated them by mutagenesis in exon-trapping vectors. All exons used dBPs up to 273 nt upstream of the exon. Strikingly, exons 4 and 5 used combinations of both distant and conventionally located BPs, suggesting that successful splicing of these exons can occur by distinct pathways. Our results emphasize the importance for single nucleotide polymorphism resequencing projects to take account of potential dBPs, as the extended AGEZs are vulnerable to mutations that could affect splicing itself or regulation of alternative splicing.


Asunto(s)
Exones/genética , Receptores de Serotonina 5-HT4/genética , Secuencia de Bases , Secuencia Conservada , Células HeLa , Humanos , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Empalme del ARN , Receptores de Serotonina 5-HT4/metabolismo
10.
RNA ; 15(1): 33-43, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19037011

RESUMEN

As well as generating protein isoform diversity, in some cases alternative splicing generates RNAs that harbor premature termination codons and that are subject to nonsense-mediated decay (NMD). We previously identified an apparent pseudo-exon in the rat alpha-tropomyosin (Tpm1) gene as a probable genuine alternatively spliced exon that causes NMD when spliced into Tpm1 RNA. Here, we report the analysis of cis-acting splicing regulatory elements within this "nonsense exon." Guided by the data set of predicted splicing enhancer and silencer elements compiled by Zhang and Chasin, we made a series of mutations through the nonsense exon and found that like authentic exons it is densely packed with enhancer and silencer elements. Strikingly, 11 of 13 tested mutations behaved as predicted computationally. In particular, we found that a G-rich silencer at the 5' end, which is crucial for skipping of the nonsense exon, functions by binding hnRNP-H and F.


Asunto(s)
Exones/genética , Silenciador del Gen , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Tropomiosina/genética , Empalme Alternativo/genética , Animales , Secuencia de Bases , Codón sin Sentido/metabolismo , Elementos de Facilitación Genéticos , Células HeLa , Humanos , Datos de Secuencia Molecular , Precursores del ARN/metabolismo , Ratas , Tropomiosina/metabolismo
11.
PLoS Comput Biol ; 6(11): e1001016, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21124863

RESUMEN

The branch point (BP) is one of the three obligatory signals required for pre-mRNA splicing. In mammals, the degeneracy of the motif combined with the lack of a large set of experimentally verified BPs complicates the task of modeling it in silico, and therefore of predicting the location of natural BPs. Consequently, BPs have been disregarded in a considerable fraction of the genome-wide studies on the regulation of splicing in mammals. We present a new computational approach for mammalian BP prediction. Using sequence conservation and positional bias we obtained a set of motifs with good agreement with U2 snRNA binding stability. Using a Support Vector Machine algorithm, we created a model complemented with polypyrimidine tract features, which considerably improves the prediction accuracy over previously published methods. Applying our algorithm to human introns, we show that BP position is highly dependent on the presence of AG dinucleotides in the 3' end of introns, with distance to the 3' splice site and BP strength strongly correlating with alternative splicing. Furthermore, experimental BP mapping for five exons preceded by long AG-dinucleotide exclusion zones revealed that, for a given intron, more than one BP can be chosen throughout the course of splicing. Finally, the comparison between exons of different evolutionary ages and pseudo exons suggests a key role of the BP in the pathway of exon creation in human. Our computational and experimental analyses suggest that BP recognition is more flexible than previously assumed, and it appears highly dependent on the presence of downstream polypyrimidine tracts. The reported association between BP features and the splicing outcome suggests that this, so far disregarded but yet crucial, element buries information that can complement current acceptor site models.


Asunto(s)
Empalme Alternativo , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Algoritmos , Animales , Bases de Datos Genéticas , Regulación de la Expresión Génica , Humanos , Modelos Genéticos , Modelos Estadísticos , Transducción de Señal
12.
Nat Commun ; 12(1): 1488, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674615

RESUMEN

RNA helicases remodel the spliceosome to enable pre-mRNA splicing, but their binding and mechanism of action remain poorly understood. To define helicase-RNA contacts in specific spliceosomal states, we develop purified spliceosome iCLIP (psiCLIP), which reveals dynamic helicase-RNA contacts during splicing catalysis. The helicase Prp16 binds along the entire available single-stranded RNA region between the branchpoint and 3'-splice site, while Prp22 binds diffusely downstream of the branchpoint before exon ligation, but then switches to more narrow binding in the downstream exon after exon ligation, arguing against a mechanism of processive translocation. Depletion of the exon-ligation factor Prp18 destabilizes Prp22 binding to the pre-mRNA, suggesting that proofreading by Prp22 may sense the stability of the spliceosome during exon ligation. Thus, psiCLIP complements structural studies by providing key insights into the binding and proofreading activity of spliceosomal RNA helicases.


Asunto(s)
Exones , ARN Helicasas/química , ARN Helicasas/metabolismo , Precursores del ARN/metabolismo , Empalme del ARN , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Modelos Moleculares , Precursores del ARN/química , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN de Hongos/metabolismo , Proteínas Recombinantes , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Empalmosomas/química
13.
Nat Biotechnol ; 22(8): 1001-5, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15258596

RESUMEN

RNA editing by members of the ADAR (adenosine deaminases acting on RNA) family leads to site-specific conversion of adenosine to inosine (A-to-I) in precursor messenger RNAs. Editing by ADARs is believed to occur in all metazoa, and is essential for mammalian development. Currently, only a limited number of human ADAR substrates are known, whereas indirect evidence suggests a substantial fraction of all pre-mRNAs being affected. Here we describe a computational search for ADAR editing sites in the human transcriptome, using millions of available expressed sequences. We mapped 12,723 A-to-I editing sites in 1,637 different genes, with an estimated accuracy of 95%, raising the number of known editing sites by two orders of magnitude. We experimentally validated our method by verifying the occurrence of editing in 26 novel substrates. A-to-I editing in humans primarily occurs in noncoding regions of the RNA, typically in Alu repeats. Analysis of the large set of editing sites indicates the role of editing in controlling dsRNA stability.


Asunto(s)
Adenosina/genética , Mapeo Cromosómico/métodos , Inosina/genética , Edición de ARN/genética , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos , Factores de Transcripción/genética , Disparidad de Par Base/genética , Emparejamiento Base/genética , Secuencia de Bases , Etiquetas de Secuencia Expresada , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia/métodos , Homología de Secuencia de Ácido Nucleico
14.
Nucleic Acids Res ; 33(4): 1162-8, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15731336

RESUMEN

A-to-I RNA editing by ADARs is a post-transcriptional mechanism for expanding the proteomic repertoire. Genetic recoding by editing was so far observed for only a few mammalian RNAs that are predominantly expressed in nervous tissues. However, as these editing targets fail to explain the broad and severe phenotypes of ADAR1 knockout mice, additional targets for editing by ADARs were always expected. Using comparative genomics and expressed sequence analysis, we identified and experimentally verified four additional candidate human substrates for ADAR-mediated editing: FLNA, BLCAP, CYFIP2 and IGFBP7. Additionally, editing of three of these substrates was verified in the mouse while two of them were validated in chicken. Interestingly, none of these substrates encodes a receptor protein but two of them are strongly expressed in the CNS and seem important for proper nervous system function. The editing pattern observed suggests that some of the affected proteins might have altered physiological properties leaving the possibility that they can be related to the phenotypes of ADAR1 knockout mice.


Asunto(s)
Adenosina Desaminasa/metabolismo , Adenosina/metabolismo , Evolución Molecular , Inosina/metabolismo , Edición de ARN , Sustitución de Aminoácidos , Animales , Pollos/genética , Proteínas Contráctiles/química , Proteínas Contráctiles/genética , Filaminas , Genómica/métodos , Humanos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Ratones , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Neoplasias/genética , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas de Unión al ARN
15.
Mol Biol Cell ; 13(11): 3822-35, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12429827

RESUMEN

The human RNA-editing enzyme adenosine deaminase that acts on RNA (ADAR1) is expressed in two versions. A longer 150-kDa protein is interferon inducible and can be found both in the nucleus and cytoplasm. An amino-terminally truncated 110-kDa version, in contrast, is constitutively expressed and predominantly nuclear. In the absence of transcription, however, the shorter protein is also cytoplasmic and thus displays the hallmarks of a shuttling protein. The nuclear localization signal (NLS) of human hsADAR1 is atypical and overlaps with its third double-stranded RNA-binding domain (dsRBD). Herein, we identify regions in hsADAR1 that interfere with nuclear localization and mediate cytoplasmic accumulation. We show that interferon-inducible hsADAR1 contains a Crm1-dependent nuclear export signal in its amino terminus. Most importantly, we demonstrate that the first dsRBD of hsADAR1 interferes with nuclear localization of a reporter construct containing dsRBD3 as an active NLS. The same effect can be triggered by several other, but not all dsRBDs. Active RNA binding of either the inhibitory dsRBD1 or the NLS bearing dsRBD3 is required for cytoplasmic accumulation. Furthermore, hsADAR1's dsRBD1 has no effect on other NLSs, suggesting RNA-mediated cross talk between dsRBDs, possibly leading to masking of the NLS. A model, incorporating these findings is presented. Finally, we identify a third region located in the C terminus of hsADAR1 that also interferes with nuclear accumulation of this protein.


Asunto(s)
Adenosina Desaminasa/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Conformación Proteica , Señales de Clasificación de Proteína , ARN/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Proteínas de Unión al ADN/metabolismo , Dimerización , Humanos , Leucina/metabolismo , Ratones , Datos de Secuencia Molecular , Edición de ARN , Proteínas de Unión al ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
16.
Cell Rep ; 19(5): 1056-1067, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28467899

RESUMEN

Many RNA-binding proteins (RBPs) regulate both alternative exons and poly(A) site selection. To understand their regulatory principles, we developed expressRNA, a web platform encompassing computational tools for integration of iCLIP and RNA motif analyses with RNA-seq and 3' mRNA sequencing. This reveals at nucleotide resolution the "RNA maps" describing how the RNA binding positions of RBPs relate to their regulatory functions. We use this approach to examine how TDP-43, an RBP involved in several neurodegenerative diseases, binds around its regulated poly(A) sites. Binding close to the poly(A) site generally represses, whereas binding further downstream enhances use of the site, which is similar to TDP-43 binding around regulated exons. Our RNAmotifs2 software also identifies sequence motifs that cluster together with the binding motifs of TDP-43. We conclude that TDP-43 directly regulates diverse types of pre-mRNA processing according to common position-dependent principles.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Poliadenilación , Empalme del ARN , ARN Mensajero/metabolismo , Células HEK293 , Humanos , Unión Proteica , Señales de Poliadenilación de ARN 3' , ARN Mensajero/química , ARN Mensajero/genética
17.
Genome Biol ; 16: 201, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26392272

RESUMEN

BACKGROUND: Sequential assembly of the human spliceosome on RNA transcripts regulates splicing across the human transcriptome. The core spliceosome component PRPF8 is essential for spliceosome assembly through its participation in ribonucleoprotein (RNP) complexes for splice-site recognition, branch-point formation and catalysis. PRPF8 deficiency is linked to human diseases like retinitis pigmentosa or myeloid neoplasia, but its genome-wide effects on constitutive and alternative splicing remain unclear. RESULTS: Here, we show that alterations in RNA splicing patterns across the human transcriptome that occur in conditions of restricted cellular PRPF8 abundance are defined by the altered splicing of introns with weak 5' splice sites. iCLIP of spliceosome components reveals that PRPF8 depletion decreases RNP complex formation at most splice sites in exon-intron junctions throughout the genome. However, impaired splicing affects only a subset of human transcripts, enriched for mitotic cell cycle factors, leading to mitotic arrest. Preferentially retained introns and differentially used exons in the affected genes contain weak 5' splice sites, but are otherwise indistinguishable from adjacent spliced introns. Experimental enhancement of splice-site strength in mini-gene constructs overcomes the effects of PRPF8 depletion on the kinetics and fidelity of splicing during transcription. CONCLUSIONS: Competition for PRPF8 availability alters the transcription-coupled splicing of RNAs in which weak 5' splice sites predominate, enabling diversification of human gene expression during biological processes like mitosis. Our findings exemplify the regulatory potential of changes in the core spliceosome machinery, which may be relevant to slow-onset human genetic diseases linked to PRPF8 deficiency.


Asunto(s)
Empalme Alternativo/genética , Proteínas de Unión al ARN/genética , Retinitis Pigmentosa/genética , Transcriptoma/genética , Exones/genética , Genoma , Humanos , Intrones/genética , Mutación , Sitios de Empalme de ARN , ARN Mensajero/genética , Retinitis Pigmentosa/patología , Ribonucleoproteínas/genética , Empalmosomas/genética
18.
Front Mol Neurosci ; 6: 40, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24312000

RESUMEN

Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized primarily by the selective death of dopaminergic (DA) neurons in the substantia nigra pars compacta of the midbrain. Although several genetic forms of PD have been identified, the precise molecular mechanisms underlying DA neuron loss in PD remain elusive. In recent years, microRNAs (miRNAs) have been recognized as potent post-transcriptional regulators of gene expression with fundamental roles in numerous biological processes. Although their role in PD pathogenesis is still a very active area of investigation, several seminal studies have contributed significantly to our understanding of the roles these small non-coding RNAs play in the disease process. Among these are studies which have demonstrated specific miRNAs that target and down-regulate the expression of PD-related genes as well as those demonstrating a reciprocal relationship in which PD-related genes act to regulate miRNA processing machinery. Concurrently, a wealth of knowledge has become available regarding the molecular mechanisms that unify the underlying etiology of genetic and sporadic PD pathogenesis, including dysregulated protein quality control by the ubiquitin-proteasome system and autophagy pathway, activation of programmed cell death, mitochondrial damage and aberrant DA neurodevelopment and maintenance. Following a discussion of the interactions between PD-related genes and miRNAs, this review highlights those studies which have elucidated the roles of these pathways in PD pathogenesis. We highlight the potential of miRNAs to serve a critical regulatory role in the implicated disease pathways, given their capacity to modulate the expression of entire families of related genes. Although few studies have directly linked miRNA regulation of these pathways to PD, a strong foundation for investigation has been laid and this area holds promise to reveal novel therapeutic targets for PD.

19.
FEBS J ; 277(4): 856-66, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20082635

RESUMEN

Following the original reports of pre-mRNA splicing in 1977, it was quickly realized that splicing together of different combinations of splice sites--alternative splicing--allows individual genes to generate more than one mRNA isoform. The full extent of alternative splicing only began to be revealed once large-scale genome and transcriptome sequencing projects began, rapidly revealing that alternative splicing is the rule rather than the exception. Recent technical innovations have facilitated the investigation of alternative splicing at a global scale. Splice-sensitive microarray platforms and deep sequencing allow quantitative profiling of very large numbers of alternative splicing events, whereas global analysis of the targets of RNA binding proteins reveals the regulatory networks involved in post-transcriptional gene control. Combined with sophisticated computational analysis, these new approaches are beginning to reveal the so-called 'RNA code' that underlies tissue and developmentally regulated alternative splicing, and that can be disrupted by disease-causing mutations.


Asunto(s)
Empalme Alternativo , Secuencias de Aminoácidos , Animales , Antígenos de Neoplasias/genética , Enfermedad/genética , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Humanos , Análisis por Micromatrices , Proteínas del Tejido Nervioso/genética , Antígeno Ventral Neuro-Oncológico , Proteínas de Unión al ARN/genética
20.
RNA ; 12(11): 1993-2004, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17000903

RESUMEN

Specific RNA recognition of proteins containing the double-strand RNA-binding domain (dsRBD) is essential for several biological pathways such as ADAR-mediated adenosine deamination, localization of RNAs by Staufen, or RNA cleavage by RNAse III. Structural analysis has demonstrated the lack of base-specific interactions of dsRBDs with either a perfect RNA duplex or an RNA hairpin. We therefore asked whether in vitro selections performed in parallel with individual dsRBDs could yield RNAs that are specifically recognized by the dsRBD on which they were selected . To this end, SELEX experiments were performed using either the second dsRBD of the RNA-editing enzyme ADAR1 or the second dsRBD of Xlrbpa, a homolog of TRBP that is involved in RISC formation. Several RNA families with high binding capacities for dsRBDs were isolated from either SELEX experiment, but no discrimination of these RNAs by different dsRBDs could be detected. The selected RNAs are highly structured, and binding regions map to two neighboring stem-loops that presumably form stacked helices and are interrupted by mismatches and bulges. Despite the lack of selective binding of SELEX RNAs to individual dsRBDS, selected RNAs can efficiently interfere with RNA editing in vivo.


Asunto(s)
Adenosina Desaminasa/metabolismo , Aptámeros de Nucleótidos/metabolismo , Edición de ARN/genética , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Xenopus/metabolismo , Adenosina Desaminasa/genética , Animales , Aptámeros de Nucleótidos/genética , Emparejamiento Base , Secuencia de Bases , Datos de Secuencia Molecular , ARN Bicatenario/genética , Proteínas de Unión al ARN/genética , Técnica SELEX de Producción de Aptámeros , Análisis de Secuencia de ADN , Proteínas de Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA