Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816652

RESUMEN

In mice, γδ-T lymphocytes that express the co-stimulatory molecule, CD27, are committed to the IFNγ-producing lineage during thymic development. In the periphery, these cells play a critical role in host defense and anti-tumor immunity. Unlike αß-T cells that rely on MHC-presented peptides to drive their terminal differentiation, it is unclear whether MHC-unrestricted γδ-T cells undergo further functional maturation after exiting the thymus. Here, we provide evidence of phenotypic and functional diversity within peripheral IFNγ-producing γδ T cells. We found that CD27+ Ly6C- cells convert into CD27+Ly6C+ cells, and these CD27+Ly6C+ cells control cancer progression in mice, while the CD27+Ly6C- cells cannot. The gene signatures of these two subsets were highly analogous to human immature and mature γδ-T cells, indicative of conservation across species. We show that IL-27 supports the cytotoxic phenotype and function of mouse CD27+Ly6C+ cells and human Vδ2+ cells, while IL-27 is dispensable for mouse CD27+Ly6C- cell and human Vδ1+ cell functions. These data reveal increased complexity within IFNγ-producing γδ-T cells, comprising immature and terminally differentiated subsets, that offer new insights into unconventional T-cell biology.

2.
Br J Haematol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924051

RESUMEN

Steroids are a mainstay in the treatment of acute lymphoblastic leukaemia (ALL) in children and adolescents; however, their use can cause clinically significant steroid-related neuropsychiatric symptoms (SRNS). As current knowledge on SRNS during ALL treatment is limited, we mapped the phenotypes, occurrence and treatment strategies using a database created by the international Ponte di Legno Neurotoxicity Working Group including data on toxicity in the central nervous system (CNS) in patients treated with frontline ALL protocols between 2000 and 2017. Ninety-four of 1813 patients in the CNS toxicity database (5.2%) experienced clinically significant SRNS with two peaks: one during induction and one during intensification phase. Dexamethasone was implicated in 86% of SRNS episodes. The most common symptoms were psychosis (52%), agitation (44%) and aggression (31%). Pharmacological treatment, mainly antipsychotics and benzodiazepines, was given to 87% of patients while 38% were hospitalised due to their symptoms. Recurrence of symptoms was reported in 29% of patients and two previously healthy patients required ongoing pharmacological treatment at the last follow up. Awareness of SRNS during ALL treatment and recommendation on treatment strategies merit further studies and consensus.

3.
Blood ; 138(21): 2066-2092, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34111240

RESUMEN

t(4;11) MLL-AF4 acute leukemia is one of the most aggressive malignancies in the infant and pediatric population, yet we have little information on the molecular mechanisms responsible for disease progression. This impairs the development of therapeutic regimens that can address the aggressive phenotype and lineage plasticity of MLL-AF4-driven leukemogenesis. This study highlights novel mechanisms of disease development by focusing on 2 microRNAs (miRNAs) upregulated in leukemic blasts from primary patient samples: miR-130b and miR-128a. We show that miR-130b and miR-128a are downstream targets of MLL-AF4 and can individually drive the transition from a pre-leukemic stage to an acute leukemia in an entirely murine Mll-AF4 in vivo model. They are also required to maintain the disease phenotype. Interestingly, miR-130b overexpression led to a mixed/B-cell precursor (BCP)/myeloid leukemia, propagated by the lymphoid-primed multipotent progenitor (LMPP) population, whereas miR-128a overexpression resulted in a pro-B acute lymphoblastic leukemia (ALL), maintained by a highly expanded Il7r+c-Kit+ blast population. Molecular and phenotypic changes induced by these two miRNAs fully recapitulate the human disease, including central nervous system infiltration and activation of an MLL-AF4 expression signature. Furthermore, we identified 2 downstream targets of these miRNAs, NR2F6 and SGMS1, which in extensive validation studies are confirmed as novel tumor suppressors of MLL-AF4+ leukemia. Our integrative approach thus provides a platform for the identification of essential co-drivers of MLL-rearranged leukemias, in which the preleukemia to leukemia transition and lineage plasticity can be dissected and new therapeutic approaches can be tested.


Asunto(s)
Leucemia Mieloide Aguda/genética , MicroARNs/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Femenino , Regulación Leucémica de la Expresión Génica , Humanos , Masculino , Ratones , Preleucemia/genética , Factores de Elongación Transcripcional/genética , Translocación Genética
4.
Blood ; 138(19): 1870-1884, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34424946

RESUMEN

B-cell acute lymphoblastic leukemia (B-ALL) occurs most commonly in children, whereas chronic myeloid leukemia is more frequent in adults. The myeloid bias of hematopoiesis in elderly individuals has been considered causative, but the age of the bone marrow microenvironment (BMM) may be contributory. Using various murine models of B-ALL in young vs old mice, we recapitulated B-ALL preponderance in children vs adults. We showed differential effects of young vs old BM macrophages on B-ALL cell function. Molecular profiling using RNA- and ATAC-sequencing revealed pronounced differences in young vs old BMM-derived macrophages and enrichment for gene sets associated with inflammation. In concordance with the role of C-X-C motif chemokine (CXCL) 13 for disease-associated B-cell chemoattraction, we found CXCL13 to be highly expressed in young macrophages on a translational compared with a transcriptional level. Inhibition of CXCL13 in BM macrophages impaired leukemia cell migration and decreased the proliferation of cocultured B-ALL cells, whereas recombinant CXCL13 increased pAKT and B-ALL cell expansion. Pretreatment of B-ALL-initiating cells with CXCL13 accelerated B-ALL progression. Deficiency of Cxcr5, the receptor for CXCL13, on B-ALL-initiating cells prolonged murine survival, whereas high expression of CXCR5 in pediatric B-ALL may predict central nervous system relapse. CXCL13 staining was increased in bone sections from pediatric compared with adult patients with B-ALL. Taken together, our study shows that the age of the BMM and, in particular, BM macrophages influence the leukemia phenotype. The CXCR5-CXCL13 axis may act as prognostic marker and an attractive novel target for the treatment of B-ALL.


Asunto(s)
Quimiocina CXCL13/genética , Regulación Leucémica de la Expresión Génica , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Receptores CXCR5/genética , Microambiente Tumoral , Envejecimiento , Animales , Médula Ósea/metabolismo , Médula Ósea/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología
5.
Haematologica ; 106(4): 1056-1066, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32139432

RESUMEN

T-cell Acute Lymphoblastic Leukemia (T-ALL) is frequently characterized by glucocorticoid (GC) resistance, which is associated with inferior outcomes, thus highlighting the need for novel therapeutic approaches for GC resistant T-ALL. The pTCR/TCR signaling pathways play a critical role in cell fate decisions during physiological thymocyte development, with an interplay between TCR and glucocorticoid receptor (GR) signaling determining the T-lymphocyte selection process. We performed an shRNA screen in vitro and in vivo in T-ALL cell lines and patient derived xenograft (PDX) samples to identify vulnerabilities in the pTCR/TCR pathway and identified a critical role for the kinase LCK in cell proliferation. LCK knockdown or inhibition with dasatinib (DAS) caused cell cycle arrest. Combination of DAS with dexamethasone (DEX) resulted in significant drug synergy leading to cell death. The efficacy of this drug combination was underscored in a randomized phase II-like murine trial, recapitulating an early phase human clinical trial. T-ALL expansion in immunocompromised mice was significantly impaired using this drug combination, relative to mice receiving control vehicle or single drug treatment, highlighting the immediate clinical relevance of this drug combination for high risk T-ALL patients. Our results thus provide a strategy to improve the efficacy of current chemotherapy platforms and circumvent GC resistance.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Apoptosis , Línea Celular Tumoral , Dasatinib/farmacología , Dexametasona/farmacología , Resistencia a Antineoplásicos , Glucocorticoides/farmacología , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Linfocitos T
6.
Paediatr Anaesth ; 30(1): 9-16, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31667903

RESUMEN

Nitrous oxide (N2 O) is frequently used for short anesthesia/analgesia in children undergoing painful or repetitive procedures. Children with acute lymphoblastic leukemia (ALL) require repeated lumbar punctures with direct instillation of intrathecal chemotherapy, usually the anti-folate agent methotrexate, during their treatment. These procedures are frequently performed under anesthesia. Concerns have been intermittently raised about a drug interaction between methotrexate and N2 O that may potentiate the undesirable side effects of methotrexate, including neurotoxicity. However, the clinical evidence consists mainly of isolated case reports leading to a lack of consensus among pediatric anesthetists about the relative risk benefits of using N2 O in children with ALL. In this article, we review the biochemical basis and scientific observations that suggest a significant interaction between N2 O and methotrexate due to their dual inhibition of the key enzyme methionine synthase. The possible role of this interaction in potentiating neurotoxicity in children with cancer is discussed, and arguments and counterarguments about the clinical significance of this largely theoretical relationship are explored. Following comprehensive review of all the available data, we make the case for the circumstantial evidence being sufficiently compelling to prompt a review of practice by pediatric anesthetists and call for a precautionary approach by avoiding the use of N2 O in children receiving concurrent methotrexate.


Asunto(s)
Interacciones Farmacológicas , Metotrexato/efectos adversos , Óxido Nitroso/efectos adversos , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/antagonistas & inhibidores , Anestésicos/farmacología , Niño , Humanos , Metotrexato/farmacología , Metotrexato/uso terapéutico , Síndromes de Neurotoxicidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Vitamina B 12
7.
Int J Cancer ; 142(7): 1490-1502, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29168171

RESUMEN

Arginine is a semi-essential amino acid that plays a key role in cell survival and proliferation in normal and malignant cells. BCT-100, a pegylated (PEG) recombinant human arginase, can deplete arginine and starve malignant cells of the amino acid. Acute lymphoblastic leukemia (ALL) is the most common cancer of childhood, yet for patients with high risk or relapsed disease prognosis remains poor. We show that BCT-100 is cytotoxic to ALL blasts from patients in vitro by necrosis, and is synergistic in combination with dexamethasone. Against ALL xenografts, BCT-100 leads to a reduction in ALL engraftment and a prolongation of survival. ALL blasts express the arginine transporter CAT-1, yet the majority of blasts are arginine auxotrophic due to deficiency in either argininosuccinate synthase (ASS) or ornithine transcarbamylase (OTC). Although endogenous upregulation or retroviral transduced increases in ASS or OTC may promote ALL survival under moderately low arginine conditions, expression of these enzymes cannot prevent BCT-100 cytotoxicity at arginine depleting doses. RNA-sequencing of ALL blasts and supporting stromal cells treated with BCT-100 identifies a number of candidate pathways which are altered in the presence of arginine depletion. Therefore, BCT-100 provides a new clinically relevant therapeutic approach to target arginine metabolism in ALL.


Asunto(s)
Antineoplásicos/farmacología , Arginasa/farmacología , Arginina/metabolismo , Metaboloma/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Recombinantes/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Dexametasona/farmacología , Sinergismo Farmacológico , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Blood ; 127(16): 1998-2006, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26869395

RESUMEN

Prevention of central nervous system (CNS) relapse is critical for cure of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Despite this, mechanisms of CNS infiltration are poorly understood, and the timing, frequency, and properties of BCP-ALL blasts entering the CNS compartment are unknown. We investigated the CNS-engrafting potential of BCP-ALL cells xenotransplanted into immunodeficient NOD.Cg- ITALIC! Prkdc (ITALIC! scid) ITALIC! Il2rg (ITALIC! tm1Wjl)/SzJ mice. CNS engraftment was seen in 23 of 29 diagnostic samples (79%): 2 of 2 from patients with overt CNS disease and 21 of 27 from patients thought to be CNS negative by diagnostic lumbar puncture. Histologic findings mimic human pathology and demonstrate that leukemic cells transit the blood-cerebrospinal fluid barrier situated close to the dural sinuses, the site of recently discovered CNS lymphatics. Retrieval of blasts from the CNS showed no evidence for chemokine receptor-mediated selective trafficking. The high frequency of infiltration and lack of selective trafficking led us to postulate that CNS tropism is a generic property of leukemic cells. To test this, we performed serial dilution experiments which showed CNS engraftment in 5 of 6 mice after transplant of as few as 10 leukemic cells. Clonal tracking techniques confirmed the polyclonal nature of CNS-infiltrating cells, with multiple clones engrafting in both the CNS and periphery. Overall, these findings suggest that subclinical seeding of the CNS is likely to be present in most BCP-ALL patients at original diagnosis, and efforts to prevent CNS relapse should concentrate on effective eradication of disease from this site rather than targeting entry mechanisms.


Asunto(s)
Barrera Hematoencefálica/patología , Movimiento Celular/fisiología , Sistema Nervioso Central/patología , Infiltración Leucémica/patología , Leucocitos/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Animales , Células Cultivadas , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/secundario , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Trasplante de Neoplasias , Recurrencia , Trasplante Heterólogo
10.
Haematologica ; 103(4): 634-644, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29449437

RESUMEN

Intrachromosomal amplification of chromosome 21 is a heterogeneous chromosomal rearrangement occurring in 2% of cases of childhood precursor B-cell acute lymphoblastic leukemia. These abnormalities are too complex to engineer faithfully in animal models and are unrepresented in leukemia cell lines. As a resource for future functional and preclinical studies, we have created xenografts from the leukemic blasts of patients with intrachromosomal amplification of chromosome 21 and characterized them by in-vivo and ex-vivo luminescent imaging, flow immunophenotyping, and histological and ultrastructural analyses of bone marrow and the central nervous system. Investigation of up to three generations of xenografts revealed phenotypic evolution, branching genomic architecture and, compared with other B-cell acute lymphoblastic leukemia genetic subtypes, greater clonal diversity of leukemia-initiating cells. In support of intrachromosomal amplification of chromosome 21 as a primary genetic abnormality, it was always retained through generations of xenografts, although we also observed the first example of structural evolution of this rearrangement. Clonal segregation in xenografts revealed convergent evolution of different secondary genomic abnormalities implicating several known tumor suppressor genes and a region, containing the B-cell adaptor, PIK3AP1, and nuclear receptor co-repressor, LCOR, in the progression of B-cell acute lymphoblastic leukemia. Tracking of mutations in patients and derived xenografts provided evidence for co-operation between abnormalities activating the RAS pathway in B-cell acute lymphoblastic leukemia and for their aggressive clonal expansion in the xeno-environment. Bi-allelic loss of the CDKN2A/B locus was recurrently maintained or emergent in xenografts and also strongly selected as RNA sequencing demonstrated a complete absence of reads for genes associated with the deletions.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas Humanos Par 21 , Células Clonales/patología , Xenoinjertos/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Animales , Niño , Evolución Clonal , Progresión de la Enfermedad , Evolución Molecular , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología
11.
Semin Cell Dev Biol ; 43: 52-64, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26365277

RESUMEN

The acknowledgement that metabolic reprogramming is a central feature of cancer has generated high expectations for major advances in both diagnosis and treatment of malignancies through addressing metabolism. These have so far only been partially fulfilled, with only a few clinical applications. However, numerous diagnostic and therapeutic compounds are currently being evaluated in either clinical trials or pre-clinical models and new discoveries of alterations in metabolic genes indicate future prognostic or other applicable relevance. Altogether, these metabolic approaches now stand alongside other available measures providing hopes for the prospects of metabolomics in the clinic. Here we present a comprehensive overview of both ongoing and emerging clinical, pre-clinical and technical strategies for exploiting unique tumour metabolic traits, highlighting the current promises and anticipations of research in the field.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Metabolismo Energético/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Metabolismo Energético/fisiología , Humanos , Metabolómica , Neoplasias/patología
12.
Lancet Oncol ; 17(6): e231-e239, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27299279

RESUMEN

Although there are high survival rates for children with acute lymphoblastic leukaemia, their outcome is often counterbalanced by the burden of toxic effects. This is because reported frequencies vary widely across studies, partly because of diverse definitions of toxic effects. Using the Delphi method, 15 international childhood acute lymphoblastic leukaemia study groups assessed acute lymphoblastic leukaemia protocols to address toxic effects that were to be considered by the Ponte di Legno working group. 14 acute toxic effects (hypersensitivity to asparaginase, hyperlipidaemia, osteonecrosis, asparaginase-associated pancreatitis, arterial hypertension, posterior reversible encephalopathy syndrome, seizures, depressed level of consciousness, methotrexate-related stroke-like syndrome, peripheral neuropathy, high-dose methotrexate-related nephrotoxicity, sinusoidal obstructive syndrome, thromboembolism, and Pneumocystis jirovecii pneumonia) that are serious but too rare to be addressed comprehensively within any single group, or are deemed to need consensus definitions for reliable incidence comparisons, were selected for assessment. Our results showed that none of the protocols addressed all 14 toxic effects, that no two protocols shared identical definitions of all toxic effects, and that no toxic effect definition was shared by all protocols. Using the Delphi method over three face-to-face plenary meetings, consensus definitions were obtained for all 14 toxic effects. In the overall assessment of outcome of acute lymphoblastic leukaemia treatment, these expert opinion-based definitions will allow reliable comparisons of frequencies and severities of acute toxic effects across treatment protocols, and facilitate international research on cause, guidelines for treatment adaptation, preventive strategies, and development of consensus algorithms for reporting on acute lymphoblastic leukaemia treatment.


Asunto(s)
Terapia Combinada/efectos adversos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Tolerancia a Radiación , Niño , Consenso , Técnica Delphi , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Humanos , Pruebas de Toxicidad Aguda
13.
Blood ; 124(23): 3420-30, 2014 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-25253770

RESUMEN

For most children who relapse with acute lymphoblastic leukemia (ALL), the prognosis is poor, and there is a need for novel therapies to improve outcome. We screened samples from children with B-lineage ALL entered into the ALL-REZ BFM 2002 clinical trial (www.clinicaltrials.gov, #NCT00114348) for somatic mutations activating the Ras pathway (KRAS, NRAS, FLT3, and PTPN11) and showed mutation to be highly prevalent (76 from 206). Clinically, they were associated with high-risk features including early relapse, central nervous system (CNS) involvement, and specifically for NRAS/KRAS mutations, chemoresistance. KRAS mutations were associated with a reduced overall survival. Mutation screening of the matched diagnostic samples found many to be wild type (WT); however, by using more sensitive allelic-specific assays, low-level mutated subpopulations were found in many cases, suggesting that they survived up-front therapy and subsequently emerged at relapse. Preclinical evaluation of the mitogen-activated protein kinase kinase 1/2 inhibitor selumetinib (AZD6244, ARRY-142886) showed significant differential sensitivity in Ras pathway-mutated ALL compared with WT cells both in vitro and in an orthotopic xenograft model engrafted with primary ALL; in the latter, reduced RAS-mutated CNS leukemia. Given these data, clinical evaluation of selumetinib may be warranted for Ras pathway-mutated relapsed ALL.


Asunto(s)
Bencimidazoles/uso terapéutico , Resistencia a Antineoplásicos/genética , Genes ras , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Línea Celular Tumoral , Niño , Ensayos Clínicos como Asunto , Frecuencia de los Genes , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiología , Recurrencia , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Blood ; 123(20): 3116-27, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24700781

RESUMEN

Genome-wide association studies have consistently implicated the interleukin-15 (IL-15) gene in acute lymphoblastic leukemia (ALL) biology, including associations with disease susceptibility, and increased risk of central nervous system (CNS) involvement. However, whether pre-B ALL blasts directly respond to IL-15 is unknown. Here, we show that most pre-B ALL primary samples and cell lines express IL-15 and components of its receptor and that primary pre-B ALL cells show increased growth in culture in response to IL-15. Investigation of mechanisms of action using IL-15-responsive SD-1 cells shows this growth advantage is maximal under low-serum conditions, mimicking those found in cerebrospinal fluid. IL-15 also upregulates PSGL-1 and CXCR3, molecules associated with CNS trafficking. Investigation of downstream signaling pathways indicates that IL-15 induces signal transducer and activator of transcription 5 (STAT5), extracellular signal-regulated kinase (ERK) 1/2, and to a lesser extent phosphatidylinositol 3-kinase (PI3K) and nuclear factor κB (NF-κB) phosphorylation. The IL-15-mediated growth advantage is abolished by mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK), PI3K, and NF-κB inhibitors but preserved in the presence of STAT5 inhibition. Together, these observations provide a mechanistic link between increased levels of IL-15 expression and leukemogenesis, high-risk disease, and CNS relapse and suggest potential therapeutic targets.


Asunto(s)
Sistema Nervioso Central/inmunología , Interleucina-15/inmunología , Proteínas Quinasas Activadas por Mitógenos/inmunología , FN-kappa B/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucina-15/genética , Glicoproteínas de Membrana/genética , Ratones , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , FN-kappa B/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidor 1 de Activador Plasminogénico/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Receptores CXCR3/genética , Factor de Transcripción STAT5/antagonistas & inhibidores , Factor de Transcripción STAT5/inmunología , Transducción de Señal , Regulación hacia Arriba
18.
Leukemia ; 36(12): 2751-2768, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36266325

RESUMEN

Delivery of effective anti-leukemic agents to the central nervous system (CNS) is considered essential for cure of childhood acute lymphoblastic leukemia. Current CNS-directed therapy comprises systemic therapy with good CNS-penetration accompanied by repeated intrathecal treatments up to 26 times over 2-3 years. This approach prevents most CNS relapses, but is associated with significant short and long term neurotoxicity. Despite this burdensome therapy, there have been no new drugs licensed for CNS-leukemia since the 1960s, when very limited anti-leukemic agents were available and there was no mechanistic understanding of leukemia survival in the CNS. Another major barrier to improved treatment is that we cannot accurately identify children at risk of CNS relapse, or monitor response to treatment, due to a lack of sensitive biomarkers. A paradigm shift in treating the CNS is needed. The challenges are clear - we cannot measure CNS leukemic load, trials have been unable to establish the most effective CNS treatment regimens, and non-toxic approaches for relapsed, refractory, or intolerant patients are lacking. In this review we discuss these challenges and highlight research advances aiming to provide solutions. Unlocking the potential of risk-adapted non-toxic CNS-directed therapy requires; (1) discovery of robust diagnostic, prognostic and response biomarkers for CNS-leukemia, (2) identification of novel therapeutic targets combined with associated investment in drug development and early-phase trials and (3) engineering of immunotherapies to overcome the unique challenges of the CNS microenvironment. Fortunately, research into CNS-ALL is now making progress in addressing these unmet needs: biomarkers, such as CSF-flow cytometry, are now being tested in prospective trials, novel drugs are being tested in Phase I/II trials, and immunotherapies are increasingly available to patients with CNS relapses. The future is hopeful for improved management of the CNS over the next decade.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Estudios Prospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Sistema Nervioso Central , Recurrencia , Microambiente Tumoral
19.
Cell Rep Med ; 3(8): 100717, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977468

RESUMEN

Leukemia cells re-program their microenvironment to augment blast proliferation and enhance treatment resistance. Means of clinically targeting such niche-driven treatment resistance remain ambiguous. We develop human induced pluripotent stem cell (hiPSC)-engineered niches to reveal druggable cancer-niche dependencies. We reveal that mesenchymal (iMSC) and vascular niche-like (iANG) hiPSC-derived cells support ex vivo proliferation of patient-derived leukemia cells, affect dormancy, and mediate treatment resistance. iMSCs protect dormant and cycling blasts against dexamethasone, while iANGs protect only dormant blasts. Leukemia proliferation and protection from dexamethasone-induced apoptosis is dependent on cancer-niche interactions mediated by CDH2. Consequently, we test CDH2 antagonist ADH-1 (previously in Phase I/II trials for solid tumors) in a very aggressive patient-derived xenograft leukemia mouse model. ADH-1 shows high in vivo efficacy; ADH-1/dexamethasone combination is superior to dexamethasone alone, with no ADH-1-conferred additional toxicity. These findings provide a proof-of-concept starting point to develop improved, potentially safer therapeutics targeting niche-mediated cancer dependencies in blood cancers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Leucemia , Neoplasias , Animales , Médula Ósea/patología , Dexametasona/farmacología , Resistencia a Antineoplásicos , Humanos , Leucemia/patología , Ratones , Neoplasias/patología , Microambiente Tumoral
20.
Commun Biol ; 4(1): 73, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452446

RESUMEN

Central nervous system (CNS) involvement remains a challenge in the diagnosis and treatment of acute lymphoblastic leukemia (ALL). In this study, we identify CD79a (also known as Igα), a signaling component of the preB cell receptor (preBCR), to be associated with CNS-infiltration and -relapse in B-cell precursor (BCP)-ALL patients. Furthermore, we show that downregulation of CD79a hampers the engraftment of leukemia cells in different murine xenograft models, particularly in the CNS.


Asunto(s)
Antígenos CD79/metabolismo , Neoplasias del Sistema Nervioso Central/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Familia-src Quinasas/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA