Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 139(6): 065101, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23947891

RESUMEN

We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm.


Asunto(s)
Antígenos Bacterianos/toxicidad , Toxinas Bacterianas/toxicidad , Membrana Celular/efectos de los fármacos , Membrana Dobles de Lípidos/química , Animales , Antígenos Bacterianos/genética , Toxinas Bacterianas/genética , Células Sanguíneas/efectos de los fármacos , Endosomas/efectos de los fármacos , Cobayas , Haplorrinos , Humanos , Membranas Artificiales , Conejos
2.
Biophys J ; 95(3): 1157-64, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18645196

RESUMEN

Nonelectrolyte polymers of poly(ethylene glycol) (PEG) were used to estimate the diameter of the ion channel formed by the Bacillus anthracis protective antigen 63 (PA(63)). Based on the ability of different molecular weight PEGs to partition into the pore and reduce channel conductance, the pore appears to be narrower than the one formed by Staphylococcus aureus alpha-hemolysin. Numerical integration of the PEG sample mass spectra and the channel conductance data were used to refine the estimate of the pore's PEG molecular mass cutoff (approximately 1400 g/mol). The results suggest that the limiting diameter of the PA(63) pore is <2 nm, which is consistent with an all-atom model of the PA(63) channel and previous experiments using large ions.


Asunto(s)
Antígenos Bacterianos/química , Antígenos Bacterianos/ultraestructura , Bacillus anthracis/química , Toxinas Bacterianas/química , Modelos Químicos , Modelos Moleculares , Polietilenglicoles/química , Simulación por Computador , Electrólitos/química , Porosidad , Conformación Proteica
3.
J Biol Chem ; 280(40): 34056-62, 2005 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-16087661

RESUMEN

The significant threat posed by biological agents (e.g. anthrax, tetanus, botulinum, and diphtheria toxins) (Inglesby, T. V., O'Toole, T., Henderson, D. A., Bartlett, J. G., Ascher, M. S., Eitzen, E., Friedlander, A. M., Gerberding, J., Hauer, J., Hughes, J., McDade, J., Osterholm, M. T., Parker, G., Perl, T. M., Russell, P. K., and Tonat, K. (2002) J. Am. Med. Assoc. 287, 2236-2252) requires innovative technologies and approaches to understand the mechanisms of toxin action and to develop better therapies. Anthrax toxins are formed from three proteins secreted by fully virulent Bacillus anthracis, protective antigen (PA, 83 kDa), lethal factor (LF, 90 kDa), and edema factor (EF, 89 kDa). Here we present electrophysiological measurements demonstrating that full-length LF and EF convert the current-voltage relationship of the heptameric PA63 ion channel from slightly nonlinear to highly rectifying and diode-like at pH 6.6. This effect provides a novel method for characterizing functional toxin interactions. The method confirms that a previously well characterized PA63 monoclonal antibody, which neutralizes anthrax lethal toxin in animals in vivo and in vitro, prevents the binding of LF to the PA63 pore. The technique can also detect the presence of anthrax lethal toxin complex from plasma of infected animals. The latter two results suggest the potential application of PA63 nanopore-based biosensors in anthrax therapeutics and diagnostics.


Asunto(s)
Antígenos Bacterianos/análisis , Antígenos Bacterianos/farmacología , Toxinas Bacterianas/análisis , Toxinas Bacterianas/farmacología , Técnicas Biosensibles/métodos , Canales Iónicos/efectos de los fármacos , Animales , Anticuerpos Monoclonales , Bacillus anthracis/patogenicidad , Bioterrorismo , Membrana Celular , Electrofisiología , Femenino , Humanos , Hibridomas , Concentración de Iones de Hidrógeno , Canales Iónicos/fisiología , Ratones , Ratones Endogámicos BALB C , Mieloma Múltiple/patología , Nanotecnología , Porosidad , Receptores de Superficie Celular , Sensibilidad y Especificidad , Bazo/citología
4.
J Biol Chem ; 280(11): 10834-9, 2005 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-15644338

RESUMEN

Anthrax protective antigen (PA, 83 kDa), a pore-forming protein, upon protease activation to 63 kDa (PA(63)), translocates lethal factor (LF) and edema factor (EF) from endosomes into the cytosol of the cell. The relatively small size of the heptameric PA(63) pore (approximately 12 angstroms) raises questions as to how large molecules such as LF and EF can move through the pore. In addition, the reported high binding affinity between PA and EF/LF suggests that EF/LF may not dissociate but remain complexed with activated PA(63). In this study, we found that purified (PA(63))(7)-LF complex exhibited biological and functional activities similar to the free LF. Purified LF complexed with PA(63) heptamer was able to cleave both a synthetic peptide substrate and endogenous mitogen-activated protein kinase kinase substrates and kill susceptible macrophage cells. Electrophysiological studies of the complex showed strong rectification of the ionic current at positive voltages, an effect similar to that observed if LF is added to the channels formed by heptameric PA(63) pore. Complexes of (PA(63))(7)-LF found in the plasma of infected animals showed functional activity. Identifying active complex in the blood of infected animals has important implications for therapeutic design, especially those directed against PA and LF. Our studies suggest that the individual toxin components and the complex must be considered as critical targets for anthrax therapeutics.


Asunto(s)
Carbunco/metabolismo , Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Bacillus anthracis/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Animales , Western Blotting , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Electrofisiología , Cobayas , Técnicas In Vitro , Cinética , Membrana Dobles de Lípidos , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Péptidos/química , Unión Proteica , Conejos , Especificidad por Sustrato , Temperatura , Factores de Tiempo
5.
Biophys J ; 85(4): 2581-8, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14507720

RESUMEN

Photosystem II catalyzes photosynthetic water oxidation in plants, green algae, and cyanobacteria. The manganese-containing active site cycles through a series of five oxidation states, S(n), where n refers to the number of oxidizing equivalents stored. In this report, reaction-induced Fourier transform infrared and electron paramagnetic resonance spectra of the S(1)-to-S(2) transition are presented. These data suggest that changes in carboxylate ligation to manganese, changes in secondary structure, and/or changes in polarity occur during dark adaptation in the S(1) state. These spontaneous structural changes are attributed to a S(1)' intermediate, at the same oxidation level as S(1), in the process of photosynthetic water oxidation.


Asunto(s)
Oscuridad , Manganeso/química , Oxidación-Reducción/efectos de la radiación , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/efectos de la radiación , Agua/química , Adaptación Fisiológica/fisiología , Adaptación Fisiológica/efectos de la radiación , Espectroscopía de Resonancia por Spin del Electrón , Complejo de Proteína del Fotosistema II/fisiología , Conformación Proteica/efectos de la radiación , Espectrofotometría Infrarroja , Agua/metabolismo
6.
Biophys J ; 85(2): 1317-25, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12885674

RESUMEN

Photosystem II catalyzes the oxidation of water and the reduction of plastoquinone. The active site cycles among five oxidation states, which are called the S(n) states. PSII purification procedures include the use of the cosolvents, sucrose and/or glycerol, to stabilize water splitting activity and for cryoprotection. In this study, the effects of sucrose and glycerol on PSII were investigated. Sucrose addition was observed to stimulate the steady-state rate of oxygen evolution in the range from 0 to 1.35 M. Glycerol addition was observed to stimulate oxygen evolution in the range from 0 to 30%. Both cosolvents were observed to be inhibitory at higher concentrations. Sucrose addition was shown to have no effect on the rate of Q(A)(-) oxidation or on the K(M) for exogenous acceptor. PSII was then treated to remove extrinsic proteins. In these samples, sucrose addition stimulated activity, but glycerol addition was inhibitory at concentrations higher than approximately 0.5 M. This inhibitory effect of glycerol at relatively low concentrations is attributed to glycerol binding to the active site, when extrinsic subunits are not present. Reaction induced FTIR spectra, associated with the S(1) to S(2) transition of the water-oxidizing complex, exhibited significant differences throughout the 1,800-1,200 cm(-1) region, when glycerol- and sucrose-containing samples were compared. These measurements suggest a cosolvent-induced shift in the pK(A) of an aspartic or glutamic acid side chain, as well as structural changes at the active site. These structural alterations are attributed to a change in preferential hydration of the oxygen-evolving complex.


Asunto(s)
Clorofila/química , Glicerol/química , Oxígeno/química , Complejo de Proteína del Fotosistema II/química , Sacarosa/química , Agua/química , Oxidación-Reducción/efectos de la radiación , Complejo de Proteína del Fotosistema II/efectos de la radiación , Conformación Proteica/efectos de la radiación
7.
J Biol Chem ; 278(45): 44222-9, 2003 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-12941934

RESUMEN

Photosystem II (PSII) oxidizes water to molecular oxygen; the catalytic site is a cluster of four manganese ions. The catalytic site undergoes four sequential light-driven oxidation steps to form oxygen; these sequentially oxidized states are referred to as the Sn states, where n refers to the number of oxidizing equivalents stored. The extrinsic manganese stabilizing protein (MSP) of PSII influences the efficiency and stability of the manganese cluster, as well as the rates of the S state transitions. To understand how MSP influences photosynthetic water oxidation, we have employed isotope editing and difference Fourier transform infrared spectroscopy. MSP was expressed in Escherichia coli under conditions in which MSP aspartic and glutamic acid residues label at yields of 65 and 41%, respectively. Asparagine and glutamine were also labeled by this approach. GC/MS analysis was consistent with minimal scrambling of label into other amino acid residues and with no significant scrambling into the peptide bond. Selectively labeled MSP was then reconstituted to PSII, which had been stripped of native MSP. Difference Fourier transform infrared spectroscopy was used to probe the S1QA to S2QA- transition at 200 K, as well as the S1QB to S2QB- transition at 277 K. These experiments show that aspargine, glutamine, and glutamate residues in MSP are perturbed by photooxidation of manganese during the S1 to S2 transition.


Asunto(s)
Marcaje Isotópico , Complejo de Proteína del Fotosistema II/química , Asparagina/química , Ácido Aspártico/química , Escherichia coli/genética , Cromatografía de Gases y Espectrometría de Masas , Expresión Génica , Ácido Glutámico/química , Glutamina/química , Manganeso/química , Oxidación-Reducción , Fotoquímica , Fotosíntesis , Complejo de Proteína del Fotosistema II/genética , Proteínas Recombinantes , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA