Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plants (Basel) ; 12(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570980

RESUMEN

Zinc oxide nanoparticles (ZnO-NPs) have gained significant attention in nanotechnology due to their unique properties and potential applications in various fields, including insecticidal and antibacterial activities. The ZnO-NPs were biosynthesized by Eriobotrya japonica leaf extract and characterized by various techniques such as UV-visible (UV-vis) spectrophotometer, X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential analysis. The results of SEM revealed that NPs were irregular and spherical-shaped, with a diameter between 5 and 27 nm. Meanwhile, DLS supported that the measured size distributions were 202.8 and 94.7 nm at 11.1° and 90.0°, respectively, which supported the polydisperse nature of NPs, and the corresponding zeta potential was -20.4 mV. The insecticidal activity of the produced ZnO-NPs was determined against the adult stage of coleopteran pests, Sitophilus oryzae (Linnaeus) (Curculionidae) and Tribolium castaneum (Herbst) (Tenebrionidae). The LC50 values of ZnO-NPs against adults of S. oryzae and T. castaneum at 24 h of exposure were 7125.35 and 5642.65 µg/mL, respectively, whereas the LC90 values were 121,824.56 and 66,825.76 µg/mL, respectively. Moreover, the biosynthesized nanoparticles exhibited antibacterial activity against three potato bacterial pathogens, and the size of the inhibition zone was concentration-dependent. The data showed that the inhibition zone size increased with an increase in the concentration of nanoparticles for all bacterial isolates tested. The highest inhibition zone was observed for Ralstonia solanacearum at a concentration of 5 µg/mL, followed by Pectobacterium atrosepticum and P. carotovorum. Eventually, ZnO-NPs could be successfully used as an influential agent in pest management programs against stored-product pests and potato bacterial diseases.

2.
Plants (Basel) ; 12(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37299082

RESUMEN

Tobacco mosaic virus (TMV) is a major pathogen affecting tomato plants worldwide. The efficacy of silver nanoparticles (Ag-NPs) mediated by Punica granatum biowaste peel extract in mitigating the negative impact of TMV infection on tomato growth and oxidative stress was investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Visible (UV-Vis) spectrophotometer, X-ray Diffraction (XRD), dynamic light scattering (DLS), zeta potential, energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectra (FTIR). Results of SEM analysis of green Ag-NPs revealed the presence of condensed spherical or round NPs with diameters ranging between 61 and 97 nm. TEM confirmed the SEM results and showed round-shaped Ag-NPs with an average size of 33.37 ± 12.7 nm. The elemental analysis (EDX) of prepared Ag-NPs revealed the presence of elemental Ag as a major peak (64.43%) at 3-3.5 KeV. The FTIR revealed several functional groups on the prepared Ag-NPs, for which three treatment strategies for Ag-NP applications were evaluated in the greenhouse study and compared to inoculated TMV and control plants: pre-infection treatment (TB), post-infection treatment (TA), and dual treatment (TD). The results showed that the TD strategy is the most effective in improving tomato growth and reducing viral replication, whereas all Ag-NP treatments (TB, TA, and TD) were found to significantly increase expression of the pathogenesis-related (PR) genes PR-1 and PR-2, as well as polyphenolic compounds, HQT, and C4H genes compared to control plants. In contrast, the flavonoid content of tomato plants was not affected by the viral infection, while the phenolic content was significantly reduced in the TMV group. Furthermore, TMV infection led to a significant increase in oxidative stress markers MDA and H2O2, as well as a reduction in the enzymatic activity of the antioxidants PPO, SOD, and POX. Our results clearly showed that the application of Ag-NPs on TMV-infected plants reduces virus accumulation, delays viral replication in all treatments, and greatly enhances the expression of the CHS gene involved in flavonoid biosynthesis. Overall, these findings suggest that treatment with Ag-NPs may be an effective strategy to mitigate the negative impact of TMV infection on tomato plants.

3.
ACS Omega ; 7(1): 1537, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35036816

RESUMEN

[This corrects the article DOI: 10.1021/acsomega.0c01291.].

4.
Data Brief ; 38: 107446, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34692951

RESUMEN

Three different eutectic salt mixtures have been brought into contact with three different high temperature alloys to assess corrosion damages for next-generation CSPs. This article contains additional material to support findings and assessments reported on our main article in the Solar Energy Journal [https://doi.org/10.1016/j.solener.2021.06.069]. Five sections, A-E, provide data to ensure reproducibility and confidence in our claims in the main article. A newly designed experimental setup for high temperature exposures is described as well as impurities within used chemicals. Material thickness measurements document alloy consumption by eutectic salts. Reaction enthalpies are listed illustrating individual metal species in contact with salt species at relevant temperatures. Thermodynamic single point equilibrium calculations have extended environmentally induced Laves phase precipitation found for alloy Kanthal APMT in contact with molten chlorides.

5.
ACS Omega ; 5(34): 21345-21354, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32905410

RESUMEN

Eutectic molten salts are the most studied medium-high temperature thermal energy storage material due to their potential use in concentrated solar power plants. The aim of this work is to investigate the effect of using reduced graphene oxide (RGO) and graphene quantum dots (GQDs) on the thermal properties of eutectic molten salts. A binary nitrate eutectic mixture of NaNO3 and KNO3 was selected as a base material (BM) for nitrate/carbon-derivative composites. RGO and GQDs were individually mixed with the BM with different fractions ranged from 0.1 to 1.5 wt %. The results showed that RGO enhanced the thermal conductivity, heat of fusion, and total thermal energy storage capacity by 52.10%, 44.48%, and 10.44%, respectively. GQDs slightly improved the specific heat capacity for both solid and liquid phases by 2.53% and 3.13%, respectively. In addition, GQDs promoted the heat of fusion by 31.72% and raised the total TES capacity by 12.26%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA