Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(1): 16-18, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29958105

RESUMEN

When T cells respond to infectious agents, they differentiate into effector and memory cells. In this issue of Cell, Smith et al. use a genetic "time-stamping" method to show that the developmental time the T cell arises-near birth or as an adult-dictates what type of T effector or memory cell results.


Asunto(s)
Genes del Desarrollo , Memoria Inmunológica , Linfocitos T CD8-positivos , Niño , Humanos , Linfocitos T
3.
Nat Immunol ; 21(12): 1482-1483, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33122851
4.
Nat Immunol ; 16(1): 107-17, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25419629

RESUMEN

The strength with which complexes of self peptide and major histocompatibility complex (MHC) proteins are recognized by the T cell antigen receptor (TCR) dictates the homeostasis of naive CD8(+) T cells, but its effect on reactivity to foreign antigens is controversial. As expression of the negative regulator CD5 correlates with self-recognition, we studied CD5(lo) and CD5(hi) naive CD8(+) T cells. Gene-expression characteristics suggested CD5(hi) cells were better poised for reactivity and differentiation than were CD5(lo) cells, and we found that the CD5(hi) pool also exhibited more efficient clonal recruitment and expansion, as well as enhanced reactivity to inflammatory cues, during the recognition of foreign antigen. However, the recognition of complexes of foreign peptide and MHC was similar for both subsets. Thus, CD8(+) T cells with higher self-reactivity dominate the immune response to foreign antigens, with implications for T cell repertoire diversity and autoimmunity.


Asunto(s)
Autoantígenos/inmunología , Antígenos CD5/inmunología , Linfocitos T CD8-positivos/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Homeostasis/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fenotipo , Organismos Libres de Patógenos Específicos
5.
Immunity ; 48(4): 760-772.e4, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29625893

RESUMEN

Cerebral malaria is a deadly complication of Plasmodium infection and involves blood brain barrier (BBB) disruption following infiltration of white blood cells. During experimental cerebral malaria (ECM), mice inoculated with Plasmodium berghei ANKA-infected red blood cells develop a fatal CM-like disease caused by CD8+ T cell-mediated pathology. We found that treatment with interleukin-15 complex (IL-15C) prevented ECM, whereas IL-2C treatment had no effect. IL-15C-expanded natural killer (NK) cells were necessary and sufficient for protection against ECM. IL-15C treatment also decreased CD8+ T cell activation in the brain and prevented BBB breakdown without influencing parasite load. IL-15C induced NK cells to express IL-10, which was required for IL-15C-mediated protection against ECM. Finally, we show that ALT-803, a modified human IL-15C, mediates similar induction of IL-10 in NK cells and protection against ECM. These data identify a regulatory role for cytokine-stimulated NK cells in the prevention of a pathogenic immune response.


Asunto(s)
Interleucina-10/inmunología , Interleucina-15/inmunología , Células Asesinas Naturales/inmunología , Malaria Cerebral/inmunología , Plasmodium berghei/inmunología , Proteínas/farmacología , Animales , Barrera Hematoencefálica/patología , Encéfalo/inmunología , Encéfalo/patología , Linfocitos T CD8-positivos/inmunología , Interleucina-10/biosíntesis , Activación de Linfocitos/inmunología , Malaria Cerebral/microbiología , Malaria Cerebral/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Recombinantes de Fusión
6.
J Immunol ; 212(6): 992-1001, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38305633

RESUMEN

Malaria, which results from infection with Plasmodium parasites, remains a major public health problem. Although humans do not develop long-lived, sterilizing immunity, protection against symptomatic disease develops after repeated exposure to Plasmodium parasites and correlates with the acquisition of humoral immunity. Despite the established role Abs play in protection from malaria disease, dysregulated inflammation is thought to contribute to the suboptimal immune response to Plasmodium infection. Plasmodium berghei ANKA (PbA) infection results in a fatal severe malaria disease in mice. We previously demonstrated that treatment of mice with IL-15 complex (IL-15C; IL-15 bound to an IL-15Rα-Fc fusion protein) induces IL-10 expression in NK cells, which protects mice from PbA-induced death. Using a novel MHC class II tetramer to identify PbA-specific CD4+ T cells, in this study we demonstrate that IL-15C treatment enhances T follicular helper (Tfh) differentiation and modulates cytokine production by CD4+ T cells. Moreover, genetic deletion of NK cell-derived IL-10 or IL-10R expression on T cells prevents IL-15C-induced Tfh differentiation. Additionally, IL-15C treatment results in increased anti-PbA IgG Ab levels and improves survival following reinfection. Overall, these data demonstrate that IL-15C treatment, via its induction of IL-10 from NK cells, modulates the dysregulated inflammation during Plasmodium infection to promote Tfh differentiation and Ab generation, correlating with improved survival from reinfection. These findings will facilitate improved control of malaria infection and protection from disease by informing therapeutic strategies and vaccine design.


Asunto(s)
Malaria , Plasmodium , Ratones , Humanos , Animales , Interleucina-10/metabolismo , Interleucina-15/metabolismo , Formación de Anticuerpos , Reinfección , Linfocitos T CD4-Positivos , Linfocitos T Colaboradores-Inductores , Inflamación/metabolismo , Ratones Endogámicos C57BL , Plasmodium berghei
7.
J Pathol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38922893

RESUMEN

The melanoma tumor microenvironment is a complex milieu of cancer, inflammatory, and stromal cells. In this context, chemokines play a pivotal role in recruiting inflammatory cells and influence the tumor, exerting both pro-tumorigenic and anti-tumoral roles. Interactions between these cells is what ultimately hold together and transform the tumor into an efficient machine. A recent study found that chemokines CCL8, CCL15, and CCL20 were upregulated in melanoma cells when co-cultured with macrophages and were associated with poor survival rates. CCL8 and CCL15 also stimulated melanoma cell growth, invasion, and metastasis, and were highly expressed in tumors prone to metastasize, suggesting these chemokines are attractive and independent biomarkers. Understanding the intricated interactions within the tumor microenvironment could lead to prognostic biomarkers and to the development of new therapeutic strategies for melanoma. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

8.
J Immunol ; 210(11): 1740-1751, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074206

RESUMEN

Microbial experience fundamentally shapes immunity, particularly during the perinatal period when the immune system is underdeveloped, and novel microbial encounters are common. Most animal models are raised in specific pathogen-free (SPF) conditions with relatively uniform microbial communities. How SPF housing conditions alter early-life immune development relative to natural microbial exposure (NME) has not been thoroughly investigated. In this article, we compare immune development in SPF-raised mice with mice born from immunologically experienced mothers in microbially diverse environments. NME induced broad immune cell expansion, including naive cells, suggesting mechanisms besides activation-induced proliferation contribute to the increase in immune cell numbers. We found NME conditions also expanded immune cell progenitor cell populations in the bone marrow, suggesting microbial experience enhances immune development at the earliest stages of immune cell differentiation. Multiple immune functions characteristically impaired in infants were also enhanced by NME, including T cell memory and Th1 polarization, B cell class switching and Ab production, proinflammatory cytokine expression, and bacterial clearance after Listeria monocytogenes challenge. Collectively, our studies reveal numerous impairments in immune development in SPF conditions relative to natural immune development.


Asunto(s)
Citocinas , Listeria monocytogenes , Animales , Ratones , Citocinas/metabolismo , Médula Ósea/metabolismo , Linfocitos B , Células Madre/metabolismo , Ratones Endogámicos C57BL
9.
J Immunol ; 210(8): 1108-1122, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36881874

RESUMEN

CMV infection alters NK cell phenotype and function toward a more memory-like immune state. These cells, termed adaptive NK cells, typically express CD57 and NKG2C but lack expression of the FcRγ-chain (gene: FCER1G, FcRγ), PLZF, and SYK. Functionally, adaptive NK cells display enhanced Ab-dependent cellular cytotoxicity (ADCC) and cytokine production. However, the mechanism behind this enhanced function is unknown. To understand what drives enhanced ADCC and cytokine production in adaptive NK cells, we optimized a CRISPR/Cas9 system to ablate genes from primary human NK cells. We ablated genes that encode molecules in the ADCC pathway, such as FcRγ, CD3ζ, SYK, SHP-1, ZAP70, and the transcription factor PLZF, and tested subsequent ADCC and cytokine production. We found that ablating the FcRγ-chain caused a modest increase in TNF-α production. Ablation of PLZF did not enhance ADCC or cytokine production. Importantly, SYK kinase ablation significantly enhanced cytotoxicity, cytokine production, and target cell conjugation, whereas ZAP70 kinase ablation diminished function. Ablating the phosphatase SHP-1 enhanced cytotoxicity but reduced cytokine production. These results indicate that the enhanced cytotoxicity and cytokine production of CMV-induced adaptive NK cells is more likely due to the loss of SYK than the lack of FcRγ or PLZF. We found the lack of SYK expression could improve target cell conjugation through enhanced CD2 expression or limit SHP-1-mediated inhibition of CD16A signaling, leading to enhanced cytotoxicity and cytokine production.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Humanos , Quinasa Syk/genética , Sistemas CRISPR-Cas , Células Asesinas Naturales , Citocinas , Citotoxicidad Celular Dependiente de Anticuerpos
10.
Proc Natl Acad Sci U S A ; 119(43): e2209021119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36260745

RESUMEN

Interleukin-15 (IL-15) is often considered a central regulator of memory CD8+ T cells, based primarily on studies of recirculating subsets. However, recent work identified IL-15-independent CD8+ T cell memory populations, including tissue-resident memory CD8+ T cells (TRM) in some nonlymphoid tissues (NLTs). Whether this reflects the existence of IL-15-insensitive memory CD8+ T cells is unclear. We report that IL-15 complexes (IL-15c) stimulate rapid proliferation and expansion of both tissue-resident and circulating memory CD8+ T cell subsets across lymphoid and nonlymphoid tissues with varying magnitude by tissue and memory subset, in some sites correlating with differing levels of the IL-2Rß. This was conserved for memory CD8+ T cells recognizing distinct antigens and elicited by different pathogens. Following IL-15c-induced expansion, divided cells contracted to baseline numbers and only slowly returned to basal proliferation, suggesting a mechanism to transiently amplify memory populations. Through parabiosis, we showed that IL-15c drive local proliferation of TRM, with a degree of recruitment of circulating cells to some NLTs. Hence, irrespective of homeostatic IL-15 dependence, IL-15 sensitivity is a defining feature of memory CD8+ T cell populations, with therapeutic potential for expansion of TRM and other memory subsets in an antigen-agnostic and temporally controlled fashion.


Asunto(s)
Linfocitos T CD8-positivos , Interleucina-15 , Memoria Inmunológica , Subgrupos de Linfocitos T
11.
J Immunol ; 209(11): 2149-2159, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36426978

RESUMEN

Successful vaccination strategies offer the potential for lifelong immunity against infectious diseases and cancer. There has been increased attention regarding the limited translation of some preclinical findings generated using specific pathogen-free (SPF) laboratory mice to humans. One potential reason for the difference between preclinical and clinical findings lies in maturation status of the immune system at the time of challenge. In this study, we used a "dirty" mouse model, where SPF laboratory mice were cohoused (CoH) with pet store mice to permit microbe transfer and immune system maturation, to investigate the priming of a naive T cell response after vaccination with a peptide subunit mixed with polyinosinic-polycytidylic acid and agonistic anti-CD40 mAb. Although this vaccination platform induced robust antitumor immunity in SPF mice, it failed to do so in microbially experienced CoH mice. Subsequent investigation revealed that despite similar numbers of Ag-specific naive CD4 and CD8 T cell precursors, the expansion, differentiation, and recall responses of these CD4 and CD8 T cell populations in CoH mice were significantly reduced compared with SPF mice after vaccination. Evaluation of the dendritic cell compartment revealed reduced IL-27p28 expression by XCR1+ dendritic cells from CoH mice after vaccination, correlating with reduced T cell expansion. Importantly, administration of recombinant IL-27:EBI3 complex to CoH mice shortly after vaccination significantly boosted Ag-specific CD8 and CD4 T cell expansion, further implicating the defect to be T cell extrinsic. Collectively, our data show the potential limitation of exclusive use of SPF mice when testing vaccine efficacy.


Asunto(s)
Interleucina-27 , Humanos , Ratones , Animales , Interleucina-27/metabolismo , Linfocitos T CD8-positivos , Antígenos CD40 , Diferenciación Celular , Células Dendríticas
12.
J Immunol ; 209(9): 1691-1702, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36122933

RESUMEN

Lymphocytic choriomeningitis virus (LCMV) is the prototypic arenavirus and a natural mouse pathogen. LCMV-Armstrong, an acutely resolved strain, and LCMV-clone 13, a mutant that establishes chronic infection, have provided contrasting infection models that continue to inform the fundamental biology of T cell differentiation, regulation of exhaustion, and response to checkpoint blockade. In this study, we report the isolation and characterization of LCMV-Minnesota (LCMV-MN), which was naturally transmitted to laboratory mice upon cohousing with pet shop mice and shares 80-95% amino acid homology with previously characterized LCMV strains. Infection of laboratory mice with purified LCMV-MN resulted in viral persistence that was intermediate between LCMV-Armstrong and -clone 13, with widely disseminated viral replication and viremia that was controlled within 15-30 d, unless CD4 T cells were depleted prior to infection. LCMV-MN-responding CD8+ T cells biased differentiation toward the recently described programmed death-1 (PD-1)+CXCR5+Tim-3lo stemlike CD8+ T cell population (also referred to as progenitor exhausted T cells) that effectuates responses to PD-1 blockade checkpoint inhibition, a therapy that rejuvenates responses against chronic infections and cancer. This subset resembled previously characterized PD-1+TCF1+ stemlike CD8+ T cells by transcriptional, phenotypic, and functional assays, yet was atypically abundant. LCMV-MN may provide a tool to better understand the breadth of immune responses in different settings of chronic Ag stimulation as well as the ontogeny of progenitor exhausted T cells and the regulation of responsiveness to PD-1 blockade.


Asunto(s)
Coriomeningitis Linfocítica , Virus de la Coriomeningitis Linfocítica , Aminoácidos/metabolismo , Animales , Linfocitos T CD8-positivos , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1 , Viremia/metabolismo
13.
Immunity ; 38(6): 1250-60, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23746652

RESUMEN

The CD8⁺ memory T cell population is heterogeneous, and it is unclear which subset(s) optimally mediate the central goal of the immune system-protection against infection. Here we investigate the protective capacities of CD8⁺ T cell subsets present at the memory stage of the immune response. We show that a population of CD8⁺ T cells bearing markers associated with effector cells (KLRG1(hi), CD27(lo), T-bet(hi), Eomes(lo)) persisted to the memory phase and provided optimal control of Listeria monocytogenes and vaccinia virus, despite weak recall proliferative responses. After antigen-specific boosting, this population formed the predominant secondary memory subset and maintained superior pathogen control. The effector-like memory subset displayed a distinct pattern of tissue distribution and localization within the spleen, and their enhanced capacity to eliminate Listeria involved specialized utilization of cytolysis. Together, these data suggest that long-lived effector CD8⁺ T cells are optimal for protective immunity against certain pathogens.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Infecciones por Poxviridae/inmunología , Subgrupos de Linfocitos T/inmunología , Virus Vaccinia/inmunología , Animales , Linfocitos T CD8-positivos/microbiología , Linfocitos T CD8-positivos/virología , Células Cultivadas , Citotoxicidad Inmunológica , Femenino , Inmunidad Activa , Memoria Inmunológica , Lectinas Tipo C/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores Inmunológicos , Proteínas de Dominio T Box/metabolismo , Subgrupos de Linfocitos T/microbiología , Subgrupos de Linfocitos T/virología , Transactivadores/metabolismo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
14.
J Immunol ; 205(1): 3-11, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32571979

RESUMEN

The mouse (Mus musculus) is the dominant organism used to investigate the mechanisms behind complex immunological responses because of their genetic similarity to humans and our ability to manipulate those genetics to understand downstream function. Indeed, our knowledge of immune system development, response to infection, and ways to therapeutically manipulate the immune response to combat disease were, in large part, delineated in the mouse. Despite the power of mouse-based immunology research, the translational efficacy of many new therapies from mouse to human is far from ideal. Recent data have highlighted how the naive, neonate-like immune system of specific pathogen-free mice differs dramatically in composition and function to mice living under barrier-free conditions (i.e., "dirty" mice). In this review, we discuss major findings to date and challenges faced when using dirty mice and specific areas of immunology research that may benefit from using animals with robust and varied microbial exposure.


Asunto(s)
Inmunidad/fisiología , Ratones/inmunología , Microbiota/inmunología , Modelos Animales , Investigación Biomédica Traslacional/métodos , Animales , Ratones/microbiología , Organismos Libres de Patógenos Específicos/inmunología
15.
J Immunol ; 205(4): 1059-1069, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32611727

RESUMEN

CD8 effector T cells with a CD127hi KLRG1- phenotype are considered precursors to the long-lived memory pool, whereas KLRG1+CD127low cells are viewed as short-lived effectors. Nevertheless, we and others have shown that a KLRG1+CD127low population persists into the memory phase and that these T cells (termed long-lived effector cells [LLEC]) display robust protective function during acute rechallenge with bacteria or viruses. Whether these T cells represent a true memory population or are instead a remnant effector cell population that failed to undergo initial contraction has remained unclear. In this study, we show that LLEC from mice express a distinct phenotypic and transcriptional signature that shares characteristics of both early effectors and long-lived memory cells. We also find that in contrast to KLRG1+ effector cells, LLEC undergo homeostatic proliferation and are not critically dependent on IL-15 for their maintenance. Furthermore, we find that LLEC are predominantly derived from KLRG1+ effector cells when isolated at day 12 of the response. Our work challenges the concept that the KLRG1+CD127low population is dominated by short-lived cells and shows that KLRG1 downregulation is not a prerequisite to become a long-lived protective memory T cell.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Lectinas Tipo C/inmunología , Receptores Inmunológicos/inmunología , Animales , Proliferación Celular/fisiología , Regulación hacia Abajo/inmunología , Interleucina-15/inmunología , Subunidad alfa del Receptor de Interleucina-7/inmunología , Ratones , Ratones Endogámicos C57BL , Transcripción Genética/inmunología
16.
Nature ; 532(7600): 512-6, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27096360

RESUMEN

Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside. Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice--like newborn, but not adult, humans--lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans.


Asunto(s)
Crianza de Animales Domésticos/métodos , Animales de Laboratorio/inmunología , Animales Salvajes/inmunología , Ambiente , Sistema Inmunológico/inmunología , Inmunidad/inmunología , Modelos Animales , Adulto , Animales , Diferenciación Celular , Exposición a Riesgos Ambientales , Femenino , Humanos , Inmunidad Innata/inmunología , Memoria Inmunológica , Recién Nacido , Masculino , Ratones , Fenotipo , Organismos Libres de Patógenos Específicos , Linfocitos T/citología , Linfocitos T/inmunología , Virosis/inmunología , Virosis/virología
17.
J Immunol ; 203(4): 946-955, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31243092

RESUMEN

Recent studies have characterized populations of memory CD8+ T cells that do not recirculate through the blood but are, instead, retained in nonlymphoid tissues. Such CD8+ tissue resident memory T cells (TRM) are critical for pathogen control at barrier sites. Identifying TRM and defining the basis for their tissue residency is therefore of considerable importance for understanding protective immunity and improved vaccine design. Expression of the molecule CD69 is widely used as a definitive marker for TRM, yet it is unclear whether CD69 is universally required for producing or retaining TRM Using multiple mouse models of acute immunization, we found that the functional requirement for CD69 was highly variable, depending on the tissue examined, playing no detectable role in generation of TRM at some sites (such as the small intestine), whereas CD69 was critical for establishing resident cells in the kidney. Likewise, forced expression of CD69 (but not expression of a CD69 mutant unable to bind the egress factor S1PR1) promoted CD8+ TRM generation in the kidney but not in other tissues. Our findings indicate that the functional relevance of CD69 in generation and maintenance of CD8+ TRM varies considerably, chiefly dependent on the specific nonlymphoid tissue studied. Together with previous reports that suggest uncoupling of CD69 expression and tissue residency, these findings prompt caution in reliance on CD69 expression as a consistent marker of CD8+ TRM.


Asunto(s)
Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Lectinas Tipo C/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Ratones
18.
Malar J ; 18(1): 321, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31533835

RESUMEN

Natural killer (NK) cells are important innate effector cells that are well described in their ability to kill virally-infected cells and tumors. However, there is increasing appreciation for the role of NK cells in the control of other pathogens, including intracellular parasites such as Plasmodium, the cause of malaria. NK cells may be beneficial during the early phase of Plasmodium infection-prior to the activation and expansion of antigen-specific T cells-through cooperation with myeloid cells to produce inflammatory cytokines like IFNγ. Recent work has defined how Plasmodium can activate NK cells to respond with natural cytotoxicity, and inhibit the growth of parasites via antibody-dependent cellular cytotoxicity mechanisms (ADCC). A specialized subset of adaptive NK cells that are negative for the Fc receptor γ chain have enhanced ADCC function and correlate with protection from malaria. Additionally, production of the regulatory cytokine IL-10 by NK cells prevents overt pathology and death during experimental cerebral malaria. Now that conditional NK cell mouse models have been developed, previous studies need to be reevaluated in the context of what is now known about other immune populations with similarity to NK cells (i.e., NKT cells and type I innate lymphoid cells). This brief review summarizes recent findings which support the potentially beneficial roles of NK cells during Plasmodium infection in mice and humans. Also highlighted are how the actions of NK cells can be explored using new experimental strategies, and the potential to harness NK cell function in vaccination regimens.


Asunto(s)
Inmunidad Innata , Células Asesinas Naturales/inmunología , Plasmodium/fisiología , Animales , Humanos , Células Asesinas Naturales/parasitología , Ratones
19.
Proc Natl Acad Sci U S A ; 112(42): 13075-80, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26438846

RESUMEN

The most deadly complication of Plasmodium falciparum infection is cerebral malaria (CM) with a case fatality rate of 15-25% in African children despite effective antimalarial chemotherapy. There are no adjunctive treatments for CM, so there is an urgent need to identify new targets for therapy. Here we show that the glutamine analog 6-diazo-5-oxo-L-norleucine (DON) rescues mice from CM when administered late in the infection a time at which mice already are suffering blood-brain barrier dysfunction, brain swelling, and hemorrhaging accompanied by accumulation of parasite-specific CD8(+) effector T cells and infected red blood cells in the brain. Remarkably, within hours of DON treatment mice showed blood-brain barrier integrity, reduced brain swelling, decreased function of activated effector CD8(+) T cells in the brain, and levels of brain metabolites that resembled those in uninfected mice. These results suggest DON as a strong candidate for an effective adjunctive therapy for CM in African children.


Asunto(s)
Antimaláricos/uso terapéutico , Diazooxonorleucina/uso terapéutico , Glutamina/metabolismo , Malaria Cerebral/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Animales , Antimaláricos/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Diazooxonorleucina/farmacología , Malaria Cerebral/metabolismo , Malaria Falciparum/metabolismo , Ratones
20.
Proc Natl Acad Sci U S A ; 110(33): 13498-503, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23898211

RESUMEN

Previous studies revealed the existence of foreign antigen-specific memory phenotype CD8 T cells in unimmunized mice. Considerable evidence suggests this population, termed "virtual memory" (VM) CD8 T cells, arise via physiological homeostatic mechanisms. However, the antigen-specific function of VM cells is poorly characterized, and hence their potential contribution to immune responses against pathogens is unclear. Here we show that naturally occurring, polyclonal VM cells have unique functional properties, distinct from either naïve or antigen-primed memory CD8 T cells. In striking contrast to conventional memory cells, VM cells showed poor T cell receptor-induced IFN-γ synthesis and preferentially differentiated into central memory phenotype cells after priming. Importantly, VM cells showed efficient control of Listeria monocytogenes infection, indicating memory-like capacity to eliminate certain pathogens. These data suggest naturally arising VM cells display unique functional traits, allowing them to form a bridge between the innate and adaptive phase of a response to pathogens.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Interferón gamma/biosíntesis , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Traslado Adoptivo , Animales , Linfocitos T CD8-positivos/citología , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Organismos Libres de Patógenos Específicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA