Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gels ; 9(7)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37504388

RESUMEN

One of the main issues in the cultural heritage field of restoration chemistry is the identification of greener and more effective methods for the wet cleaning of paper artefacts, which serve as witnesses to human history and custodians of cultural values. In this context, we propose a biocompatible method to perform wet cleaning on paper based on the use of 1 MHz ultrasound in combination with water-dispersed polyvinyl alcohol microbubbles (PVAMBs), followed by dabbing with PVA-based hydrogel. This method can be applied to both old and new papers. FTIR spectroscopy, X-ray diffraction, HPLC analysis, pH measurements and tensile tests were performed on paper samples, to assess the efficacy of the cleaning system. According to the results, ultrasound-activated PVAMB application allows for an efficient interaction with rough and porous cellulose paper profiles, promoting the removal of cellulose degradation byproducts, while the following hydrogel dabbing treatment guarantees the removal of cleaning materials residues. Moreover, the results also pointed out that after the treatment no thermal or mechanical damages had affected the paper. In conclusion, the readability of these kinds of artifacts can be improved without causing an alteration of their structural properties, while mitigating the risk of ink diffusion.

2.
Nat Commun ; 12(1): 436, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469027

RESUMEN

Many interpretations have been proposed to explain the presence of jarosite within Martian surficial sediments, including the possibility that it precipitated within paleo-ice deposits owing to englacial weathering of dust. However, until now a similar geochemical process was not observed on Earth nor in other planetary settings. We report a multi-analytical indication of jarosite formation within deep ice. Below 1000 m depth, jarosite crystals adhering on residual silica-rich particles have been identified in the Talos Dome ice core (East Antarctica) and interpreted as products of weathering involving aeolian dust and acidic atmospheric aerosols. The progressive increase of ice metamorphism and re-crystallization with depth, favours the relocation and concentration of dust and the formation of acidic brines in isolated environments, allowing chemical reactions and mineral neo-formation to occur. This is the first described englacial diagenetic mechanism occurring in deep Antarctic ice and supports the ice-weathering model for jarosite formation on Mars, highlighting the geologic importance of paleo ice-related processes on this planet. Additional implications concern the preservation of dust-related signals in deep ice cores with respect to paleoclimatic reconstructions and the englacial history of meteorites from Antarctic blue ice fields.

3.
ACS Appl Mater Interfaces ; 13(20): 24207-24217, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33988378

RESUMEN

In this work, we shed new light on ultrasound contrast agents applied to the field of cultural heritage as an invaluable fine-tune cleaning tool for paper artworks. In this context, one of the primary and challenging issues is the removal of modern adhesives from paper artifacts. Modern adhesives are synthetic polymers whose presence enhances paper degradation and worsens its optical features. A thorough analytical and high-spatial-resolution combined study was successfully performed to test the capability of poly(vinyl alcohol)-based microbubbles stimulated by a proper noninvasive 1 MHz ultrasound field exposure in removing these adhesives from paper surfaces, in the absence of volatile invasive and toxic chemicals and without damaging paper and/or leaving residues. We demonstrate that poly(vinyl alcohol)-shelled microbubbles are suitable for interacting with paper surfaces, targeting and boosting in a few minutes the nondamaging removal of adhesive particles from paper samples thanks to their peculiar shell composition together with their ultrasound dynamics.

4.
Anal Bioanal Chem ; 397(6): 2095-108, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20461504

RESUMEN

Many physical/chemical processes such as metal-insulator transitions or self-assembly phenomena involve correlated changes of electronic and atomic structure in a wide time range from microseconds to minutes. To investigate these dynamic processes we not only need a highly brilliant photon source in order to achieve high spatial and time resolution but new experimental methods have to be implemented. Here we present a new optical layout for performing simultaneous or concurrent infrared and X-ray measurements. This approach may indeed return unique information for example the interplay between structural changes and chemical processes occurring in the investigated sample. A beamline combining two X-ray and IR beams may really take advantage of the unique synchrotron radiation properties: the high brilliance and the broad spectrum. In this contribution we will describe the conceptual layout and the expected performance of a complex system designed to collect IR and X-ray radiation from the same bending magnet on a third-generation synchrotron radiation ring. If realized, this beamline will enable time-resolved spectroscopy experiments offering new scientific opportunities at the frontiers of science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA