Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 31(2): 398-408, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36433649

RESUMEN

Limb-girdle muscular dystrophy type R25 (LGMDR25) is caused by recessive mutations in BVES encoding a cAMP-binding protein, characterized by progressive muscular dystrophy with deteriorating muscle function and impaired cardiac conduction in patients. There is currently no therapeutic treatment for LGMDR25 patients. Here we report the efficacy and safety of recombinant adeno-associated virus 9 (AAV9)-mediated systemic delivery of human BVES driven by a muscle-specific promoter MHCK7 (AAV9.BVES) in BVES-knockout (BVES-KO) mice. AAV9.BVES efficiently transduced the cardiac and skeletal muscle tissues when intraperitoneally injected into neonatal BVES-KO mice. AAV9.BVES dramatically improved body weight gain, muscle mass, muscle strength, and exercise performance in BVES-KO mice regardless of sex. AAV9.BVES also significantly ameliorated the histopathological features of muscular dystrophy. The heart rate reduction was also normalized in BVES-KO mice under exercise-induced stress following systemic AAV9.BVES delivery. Moreover, intravenous AAV9.BVES administration into adult BVES-KO mice after the disease onset also resulted in substantial improvement in body weight, muscle mass, muscle contractility, and stress-induced heart rhythm abnormality. No obvious toxicity was detected. Taken together, these results provide the proof-of-concept evidence to support the AAV9.BVES gene therapy for LGMDR25.


Asunto(s)
Distrofia Muscular de Cinturas , Distrofias Musculares , Ratones , Animales , Humanos , Dependovirus/genética , Distrofia Muscular de Cinturas/genética , Músculo Esquelético/metabolismo , Proteínas/metabolismo , Ratones Noqueados , Proteínas Musculares/genética , Moléculas de Adhesión Celular/metabolismo
2.
Immunity ; 39(2): 311-323, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23954133

RESUMEN

Nlrp3 inflammasome activation occurs in response to numerous agonists but the specific mechanism by which this takes place remains unclear. All previously evaluated activators of the Nlrp3 inflammasome induce the generation of mitochondrial reactive oxygen species (ROS), suggesting a model in which ROS is a required upstream mediator of Nlrp3 inflammasome activation. Here we have identified the oxazolidinone antibiotic linezolid as a Nlrp3 agonist that activates the Nlrp3 inflammasome independently of ROS. The pathways for ROS-dependent and ROS-independent Nlrp3 activation converged upon mitochondrial dysfunction and specifically the mitochondrial lipid cardiolipin. Cardiolipin bound to Nlrp3 directly and interference with cardiolipin synthesis specifically inhibited Nlrp3 inflammasome activation. Together these data suggest that mitochondria play a critical role in the activation of the Nlrp3 inflammasome through the direct binding of Nlrp3 to cardiolipin.


Asunto(s)
Cardiolipinas/metabolismo , Proteínas Portadoras/metabolismo , Inflamasomas/metabolismo , Mitocondrias/metabolismo , Acetamidas/metabolismo , Acetamidas/farmacología , Animales , Cardiolipinas/inmunología , Línea Celular , Ciclosporina/metabolismo , Activación Enzimática , Humanos , Inflamación/inducido químicamente , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Linezolid , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Mitocondrias/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR , Oxazolidinonas/metabolismo , Oxazolidinonas/farmacología , Potasio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
3.
Mol Cancer ; 20(1): 118, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521423

RESUMEN

BACKGROUND: Cancer cells develop resistance to chemotherapeutic intervention by excessive formation of stress granules (SGs), which are modulated by an oncogenic protein G3BP2. Selective control of G3BP2/SG signaling is a potential means to treat non-small cell lung cancer (NSCLC). METHODS: Co-immunoprecipitation was conducted to identify the interaction of MG53 and G3BP2. Immunohistochemistry and live cell imaging were performed to visualize the subcellular expression or co-localization. We used shRNA to knock-down the expression MG53 or G3BP2 to test the cell migration and colony formation. The expression level of MG53 and G3BP2 in human NSCLC tissues was tested by western blot analysis. The ATO-induced oxidative stress model was used to examine the effect of rhMG53 on SG formation. Moue NSCLC allograft experiments were performed on wild type and transgenic mice with either knockout of MG53, or overexpression of MG53. Human NSCLC xenograft model in mice was used to evaluate the effect of MG53 overexpression on tumorigenesis. RESULTS: We show that MG53, a member of the TRIM protein family (TRIM72), modulates G3BP2 activity to control lung cancer progression. Loss of MG53 results in the progressive development of lung cancer in mg53-/- mice. Transgenic mice with sustained elevation of MG53 in the bloodstream demonstrate reduced tumor growth following allograft transplantation of mouse NSCLC cells. Biochemical assay reveals physical interaction between G3BP2 and MG53 through the TRIM domain of MG53. Knockdown of MG53 enhances proliferation and migration of NSCLC cells, whereas reduced tumorigenicity is seen in NSCLC cells with knockdown of G3BP2 expression. The recombinant human MG53 (rhMG53) protein can enter the NSCLC cells to induce nuclear translation of G3BP2 and block arsenic trioxide-induced SG formation. The anti-proliferative effect of rhMG53 on NSCLC cells was abolished with knockout of G3BP2. rhMG53 can enhance sensitivity of NSCLC cells to undergo cell death upon treatment with cisplatin. Tailored induction of MG53 expression in NSCLC cells suppresses lung cancer growth via reduced SG formation in a xenograft model. CONCLUSION: Overall, these findings support the notion that MG53 functions as a tumor suppressor by targeting G3BP2/SG activity in NSCLCs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/etiología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Gránulos de Estrés/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Neoplasias Pulmonares/patología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Gránulos de Estrés/patología
4.
Mol Ther ; 28(7): 1696-1705, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32353322

RESUMEN

Adenine base editor (ABE) is a new generation of genome-editing technology through fusion of Cas9 nickase with an evolved E. coli TadA (TadA∗) and holds great promise as novel genome-editing therapeutics for treating genetic disorders. ABEs can directly convert A-T to G-C in specific genomic DNA targets without introducing double-strand breaks (DSBs). We recently showed that computer program-assisted analysis of Sanger sequencing traces can be used as a low-cost and rapid alternative of deep sequencing to assess base-editing outcomes. Here we developed a rapid fluorescence-based reporter assay (Base Editing ON [BEON]) to quantify ABE efficiency. The assay relies on the restoration of the downstream green fluorescent protein (GFP) in ABE-mediated editing of a stop codon located within the guide RNA (gRNA). We showed that this assay can be used to screen for effective ABE variants, characterize the protospacer adjacent motif (PAM) requirement of a novel NNG-targeting ABE based on ScCas9, and enrich for edited cells. Finally, we demonstrated that the reporter assay allowed us to assess the feasibility of ABE editing to correct point mutations associated with dysferlinopathy. Taken together, the BEON assay would facilitate and simplify the studies with ABEs.


Asunto(s)
Adenina/metabolismo , Adenosina Desaminasa/genética , Proteína 9 Asociada a CRISPR/genética , Proteínas de Escherichia coli/genética , Proteínas Fluorescentes Verdes/metabolismo , Adenosina Desaminasa/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular , Codón de Terminación , Proteínas de Escherichia coli/metabolismo , Edición Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , ARN Guía de Kinetoplastida/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección
5.
Mol Ther ; 32(1): 1-2, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38104562
7.
Mol Ther ; 27(8): 1407-1414, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31129119

RESUMEN

Previous studies from others and us have demonstrated that CRISPR genome editing could offer a promising therapeutic strategy to restore dystrophin expression and function in the skeletal muscle and heart of Duchenne muscular dystrophy (DMD) mouse models. However, the long-term efficacy and safety of CRISPR genome-editing therapy for DMD has not been well established. We packaged both SaCas9 and guide RNA (gRNA) together into one AAVrh.74 vector, injected two such vectors (targeting intron 20 and intron 23, respectively) into mdx pups at day 3 and evaluated the mice at 19 months. We found that AAVrh.74-mediated life-long CRISPR genome editing in mdx mice restored dystrophin expression and improved cardiac function without inducing serious adverse effects. PCR analysis and targeted deep sequencing showed that the DSBs were mainly repaired by the precise ligation of the two cut sites. Serological and histological examination of major vital organs did not reveal any signs of tumor development or other deleterious defects arising from CRISPR genome editing. These results support that in vivo CRISPR genome editing could be developed as a safe therapeutic treatment for DMD and potentially other diseases.


Asunto(s)
Sistemas CRISPR-Cas , Cardiomiopatías/etiología , Dependovirus/genética , Distrofina/genética , Edición Génica , Terapia Genética , Vectores Genéticos/genética , Animales , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/terapia , Reparación del ADN , Modelos Animales de Enfermedad , Distrofina/metabolismo , Técnica del Anticuerpo Fluorescente , Expresión Génica , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , ARN Guía de Kinetoplastida/genética , Transducción Genética
8.
Circ Res ; 121(8): 923-929, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28790199

RESUMEN

RATIONALE: Duchenne muscular dystrophy is a severe inherited form of muscular dystrophy caused by mutations in the reading frame of the dystrophin gene disrupting its protein expression. Dystrophic cardiomyopathy is a leading cause of death in Duchenne muscular dystrophy patients, and currently no effective treatment exists to halt its progression. Recent advancement in genome editing technologies offers a promising therapeutic approach in restoring dystrophin protein expression. However, the impact of this approach on Duchenne muscular dystrophy cardiac function has yet to be evaluated. Therefore, we assessed the therapeutic efficacy of CRISPR (clustered regularly interspaced short palindromic repeats)-mediated genome editing on dystrophin expression and cardiac function in mdx/Utr+/- mice after a single systemic delivery of recombinant adeno-associated virus. OBJECTIVE: To examine the efficiency and physiological impact of CRISPR-mediated genome editing on cardiac dystrophin expression and function in dystrophic mice. METHODS AND RESULTS: Here, we packaged SaCas9 (clustered regularly interspaced short palindromic repeat-associated 9 from Staphylococcus aureus) and guide RNA constructs into an adeno-associated virus vector and systemically delivered them to mdx/Utr+/- neonates. We showed that CRIPSR-mediated genome editing efficiently excised the mutant exon 23 in dystrophic mice, and immunofluorescence data supported the restoration of dystrophin protein expression in dystrophic cardiac muscles to a level approaching 40%. Moreover, there was a noted restoration in the architecture of cardiac muscle fibers and a reduction in the extent of fibrosis in dystrophin-deficient hearts. The contractility of cardiac papillary muscles was also restored in CRISPR-edited cardiac muscles compared with untreated controls. Furthermore, our targeted deep sequencing results confirmed that our adeno-associated virus-CRISPR/Cas9 strategy was very efficient in deleting the ≈23 kb of intervening genomic sequences. CONCLUSIONS: This study provides evidence for using CRISPR-based genome editing as a potential therapeutic approach for restoring dystrophic cardiomyopathy structurally and functionally.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Cardiomiopatías/terapia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Distrofina/genética , Edición Génica/métodos , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Contracción Miocárdica , Músculos Papilares/metabolismo , Animales , Proteínas Asociadas a CRISPR/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Dependovirus/genética , Modelos Animales de Enfermedad , Distrofina/metabolismo , Exones , Fibrosis , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Vectores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Mutación , Músculos Papilares/patología , Músculos Papilares/fisiopatología , Fenotipo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Recuperación de la Función , Utrofina/genética
9.
Nucleic Acids Res ; 45(5): e28, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-27799472

RESUMEN

Clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) system has emerged in recent years as a highly efficient RNA-guided gene manipulation platform. Simultaneous editing or transcriptional activation/suppression of different genes becomes feasible with the co-delivery of multiple guide RNAs (gRNAs). Here, we report that multiple gRNAs linked with self-cleaving ribozymes and/or tRNA could be simultaneously expressed from a single U6 promoter to exert genome editing of dystrophin and myosin binding protein C3 in human and mouse cells. Moreover, this strategy allows the expression of multiple gRNAs for synergistic transcription activation of follistatin when used with catalytically inactive dCas9-VP64 or dCas9-p300core fusions. Finally, the gRNAs linked by the self-cleaving ribozymes and tRNA could be expressed from RNA polymerase type II (pol II) promoters such as generic CMV and muscle/heart-specific MHCK7. This is particularly useful for in vivo applications when the packaging capacity of recombinant adeno-associated virus is limited while tissue-specific delivery of gRNAs and Cas9 is desired. Taken together, this study provides a novel strategy to enable tissue-specific expression of more than one gRNAs for multiplex gene editing from a single pol II promoter.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , ARN Catalítico/genética , ARN Guía de Kinetoplastida/genética , ARN Nuclear Pequeño/genética , ARN de Transferencia/genética , Animales , Línea Celular , Citomegalovirus/genética , Citomegalovirus/metabolismo , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Distrofina/genética , Distrofina/metabolismo , Folistatina/genética , Folistatina/metabolismo , Células HEK293 , Humanos , Hígado/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Miosinas/genética , Miosinas/metabolismo , Regiones Promotoras Genéticas , ARN Catalítico/metabolismo , ARN Guía de Kinetoplastida/metabolismo , ARN Nuclear Pequeño/metabolismo , ARN de Transferencia/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Activación Transcripcional
10.
Mol Ther ; 24(3): 564-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26449883

RESUMEN

Duchenne muscular dystrophy (DMD) is a degenerative muscle disease caused by genetic mutations that lead to the disruption of dystrophin in muscle fibers. There is no curative treatment for this devastating disease. Clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) has emerged as a powerful tool for genetic manipulation and potential therapy. Here we demonstrate that CRIPSR-mediated genome editing efficiently excised a 23-kb genomic region on the X-chromosome covering the mutant exon 23 in a mouse model of DMD, and restored dystrophin expression and the dystrophin-glycoprotein complex at the sarcolemma of skeletal muscles in live mdx mice. Electroporation-mediated transfection of the Cas9/gRNA constructs in the skeletal muscles of mdx mice normalized the calcium sparks in response to osmotic shock. Adenovirus-mediated transduction of Cas9/gRNA greatly reduced the Evans blue dye uptake of skeletal muscles at rest and after downhill treadmill running. This study provides proof evidence for permanent gene correction in DMD.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Distrofina/genética , Distrofina/metabolismo , Edición Génica , Regulación de la Expresión Génica , Genoma , Animales , Sistemas CRISPR-Cas , Señalización del Calcio , Línea Celular , Modelos Animales de Enfermedad , Exones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , ARN Guía de Kinetoplastida , Sarcolema , Eliminación de Secuencia
11.
Curr Opin Cell Biol ; 19(4): 409-16, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17662592

RESUMEN

The ability to repair membrane damage is conserved across eukaryotic cells and is necessary for the cells to survive a variety of physiological and pathological membrane disruptions. Membrane repair is mediated by rapid Ca(2+)-triggered exocytosis of various intracellular vesicles, such as lysosomes and enlargeosomes, which lead to the formation of a membrane patch that reseals the membrane lesion. Recent findings suggest a crucial role for dysferlin in this repair process in muscle, possibly as a Ca(2+) sensor that triggers vesicle fusion. The importance of membrane repair is highlighted by the genetic disease, dysferlinopathy, in which the primary defect is the loss of Ca(2+)-regulated membrane repair due to dysferlin deficiency. Future research on dysferlin and its interacting partners will enhance the understanding of this important process and provide novel avenues to potential therapies.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Esquelético/fisiología , Proteínas Tirosina Quinasas/metabolismo , Animales , Calcio/fisiología , Disferlina , Humanos , Modelos Biológicos , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/citología , Regeneración/fisiología
12.
Res Sq ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38746161

RESUMEN

Current gene therapy for Duchenne muscular dystrophy (DMD) utilizes adeno-associated virus (AAV) to deliver miniaturized dystrophin (micro-dystrophin or µDys), which does not provide full protection for striated muscles as it lacks many important functional domains within full-length (FL) dystrophin. Here we develop a triple vector system to deliver FL-dystrophin into skeletal and cardiac muscles. We rationally split FL-dystrophin into three fragments (N, M, and C) linked to two orthogonal pairs of split intein, allowing efficient, unidirectional assembly of FL-dystrophin. The three fragments packaged in myotropic AAV (MyoAAV4A) restore FL-dystrophin expression in both skeletal and cardiac muscles in male mdx 4cv mice. Dystrophin-glycoprotein complex components are also restored in the sarcolemma of dystrophic muscles. MyoAAV4A-delivered FL-dystrophin significantly improves muscle histopathology, contractility, and overall strength comparable to µDys, but unlike µDys, it also restores defective ERK signaling in heart. The FL-dystrophin gene therapy therefore promises to offer superior protection for DMD.

13.
Nat Commun ; 14(1): 1785, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997581

RESUMEN

Biological processes incorporate feedback mechanisms to enable positive and/or negative regulation. cAMP is an important second messenger involved in many aspects of muscle biology. However, the feedback mechanisms for the cAMP signaling control in skeletal muscle are largely unknown. Here we show that blood vessel epicardial substance (BVES) is a negative regulator of adenylyl cyclase 9 (ADCY9)-mediated cAMP signaling involved in maintaining muscle mass and function. BVES deletion in mice reduces muscle mass and impairs muscle performance, whereas virally delivered BVES expressed in Bves-deficient skeletal muscle reverses these defects. BVES interacts with and negatively regulates ADCY9's activity. Disruption of BVES-mediated control of cAMP signaling leads to an increased protein kinase A (PKA) signaling cascade, thereby promoting FoxO-mediated ubiquitin proteasome degradation and autophagy initiation. Our study reveals that BVES functions as a negative feedback regulator of ADCY9-cAMP signaling in skeletal muscle, playing an important role in maintaining muscle homeostasis.


Asunto(s)
Moléculas de Adhesión Celular , Distrofias Musculares , Animales , Ratones , Moléculas de Adhesión Celular/metabolismo , Retroalimentación , Transducción de Señal/fisiología , AMP Cíclico/metabolismo
14.
Mol Ther Methods Clin Dev ; 28: 40-50, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36588820

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene. Previously, we showed that adenine base editing (ABE) can efficiently correct a nonsense point mutation in a DMD mouse model. Here, we explored the feasibility of base-editing-mediated exon skipping as a therapeutic strategy for DMD using cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs). We first generated a DMD hiPSC line with a large deletion spanning exon 48 through 54 (ΔE48-54) using CRISPR-Cas9 gene editing. Dystrophin expression was disrupted in DMD hiPSC-derived cardiomyocytes (iCMs) as examined by RT-PCR, western blot, and immunofluorescence staining. Transfection of ABE and a guide RNA (gRNA) targeting the splice acceptor led to efficient conversion of AG to GG (35.9% ± 5.7%) and enabled exon 55 skipping. Complete AG to GG conversion in a single clone restored dystrophin expression (42.5% ± 11% of wild type [WT]) in DMD iCMs. Moreover, we designed gRNAs to target the splice sites of exons 6, 7, 8, 43, 44, 46, and 53 in the mutational hotspots and demonstrated their efficiency to induce exon skipping in iCMs. These results highlight the great promise of ABE-mediated exon skipping as a promising therapeutic approach for DMD.

15.
Cell Biosci ; 13(1): 109, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322547

RESUMEN

BACKGROUND: Gene editing has emerged as an exciting therapeutic development platform for numerous genetic and nongenetic diseases. Targeting lipid-modulating genes such as angiopoietin-related protein 3 (ANGPTL3) with gene editing offers hope for a permanent solution to lower cardiovascular disease risks associated with hypercholesterolemia. RESULTS: In this study, we developed a hepatocyte-specific base editing therapeutic approach delivered by dual adeno-associated virus (AAV) to enable hepatocyte-specific targeting of Angptl3 to lower blood lipid levels. Systemic AAV9-mediated delivery of AncBE4max, a cytosine base editor (CBE), targeting mouse Angptl3 resulted in the installation of a premature stop codon in Angptl3 with an average efficiency of 63.3 ± 2.3% in the bulk liver tissue. A near-complete knockout of the ANGPTL3 protein in the circulation were observed within 2-4 weeks following AAV administration. Furthermore, the serum levels of triglyceride (TG) and total cholesterol (TC) were decreased by approximately 58% and 61%, respectively, at 4 weeks after treatment. CONCLUSIONS: These results highlight the promise of liver-targeted Angptl3 base editing for blood lipid control.

16.
Proc Natl Acad Sci U S A ; 106(31): 12573-9, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19633189

RESUMEN

Skeletal muscle basal lamina is linked to the sarcolemma through transmembrane receptors, including integrins and dystroglycan. The function of dystroglycan relies critically on posttranslational glycosylation, a common target shared by a genetically heterogeneous group of muscular dystrophies characterized by alpha-dystroglycan hypoglycosylation. Here we show that both dystroglycan and integrin alpha7 contribute to force-production of muscles, but that only disruption of dystroglycan causes detachment of the basal lamina from the sarcolemma and renders muscle prone to contraction-induced injury. These phenotypes of dystroglycan-null muscles are recapitulated by Large(myd) muscles, which have an intact dystrophin-glycoprotein complex and lack only the laminin globular domain-binding motif on alpha-dystroglycan. Compromised sarcolemmal integrity is directly shown in Large(myd) muscles and similarly in normal muscles when arenaviruses compete with matrix proteins for binding alpha-dystroglycan. These data provide direct mechanistic insight into how the dystroglycan-linked basal lamina contributes to the maintenance of sarcolemmal integrity and protects muscles from damage.


Asunto(s)
Membrana Basal/fisiología , Distroglicanos/fisiología , Laminina/fisiología , Sarcolema/fisiología , Animales , Sitios de Unión , Distroglicanos/química , Glicosilación , Integrinas/fisiología , Laminina/química , Virus de la Coriomeningitis Linfocítica , Ratones , Distrofia Muscular Animal/etiología
17.
Front Cardiovasc Med ; 9: 1000067, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312227

RESUMEN

Impaired biomolecules and cellular organelles are gradually built up during the development and aging of organisms, and this deteriorating process is expedited under stress conditions. As a major lysosome-mediated catabolic process, autophagy has evolved to eradicate these damaged cellular components and recycle nutrients to restore cellular homeostasis and fitness. The autophagic activities are altered under various disease conditions such as ischemia-reperfusion cardiac injury, sarcopenia, and genetic myopathies, which impact multiple cellular processes related to cellular growth and survival in cardiac and skeletal muscles. Thus, autophagy has been the focus for therapeutic development to treat these muscle diseases. To develop the specific and effective interventions targeting autophagy, it is essential to understand the molecular mechanisms by which autophagy is altered in heart and skeletal muscle disorders. Herein, we summarize how autophagy alterations are linked to cardiac and skeletal muscle defects and how these alterations occur. We further discuss potential pharmacological and genetic interventions to regulate autophagy activities and their applications in cardiac and skeletal muscle diseases.

18.
Cell Death Dis ; 13(11): 948, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357371

RESUMEN

Genetic mutations in the MYBPC3 gene encoding cardiac myosin binding protein C (cMyBP-C) are the most common cause of hypertrophic cardiomyopathy (HCM). Myocardial fibrosis (MF) plays a critical role in the development of HCM. However, the mechanism for mutant MYBPC3-induced MF is not well defined. In this study, we developed a R495Q mutant pig model using cytosine base editing and observed an early-onset MF in these mutant pigs shortly after birth. Unexpectedly, we found that the "cardiac-specific" MYBPC3 gene was actually expressed in cardiac fibroblasts from different species as well as NIH3T3 fibroblasts at the transcription and protein levels. CRISPR-mediated disruption of Mybpc3 in NIH3T3 fibroblasts activated nuclear factor κB (NF-κB) signaling pathway, which increased the expression of transforming growth factor beta (TGF-ß1) and other pro-inflammatory genes. The upregulation of TGF-ß1 promoted the expression of hypoxia-inducible factor-1 subunit α (HIF-1α) and its downstream targets involved in glycolysis such as GLUT1, PFK, and LDHA. Consequently, the enhanced aerobic glycolysis with higher rate of ATP biosynthesis accelerated the activation of cardiac fibroblasts, contributing to the development of HCM. This work reveals an intrinsic role of MYBPC3 in maintaining cardiac fibroblast homeostasis and disruption of MYBPC3 in these cells contributes to the disease pathogenesis of HCM.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Hipertrófica , Ratones , Porcinos , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células 3T3 NIH , Cardiomiopatía Hipertrófica/genética , Mutación , Cardiomiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Fibrosis
19.
Life Sci Alliance ; 5(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35169042

RESUMEN

Neointimal hyperplasia/proliferation (IH) is the primary etiology of vascular stenosis. Epigenomic studies concerning IH have been largely confined to in vitro models, and IH-underlying epigenetic mechanisms remain poorly understood. This study integrates information from in vivo epigenomic mapping, conditional knockout, gene transfer and pharmacology in rodent models of IH. The data from injured (IH-prone) rat arteries revealed a surge of genome-wide occupancy by histone-3 lysine-27 trimethylation (H3K27me3), a gene-repression mark. This was unexpected in the traditional view of prevailing post-injury gene activation rather than repression. Further analysis illustrated a shift of H3K27me3 enrichment to anti-proliferative genes, from pro-proliferative genes where gene-activation mark H3K27ac(acetylation) accumulated instead. H3K27ac and its reader BRD4 (bromodomain protein) co-enriched at Ezh2; conditional BRD4 knockout in injured mouse arteries reduced H3K27me3 and its writer EZH2, which positively regulated another pro-IH chromatin modulator UHRF1. Thus, results uncover injury-induced loci-specific H3K27me3 redistribution in the epigenomic landscape entailing BRD4→EZH2→UHRF1 hierarchical regulations. Given that these players are pharmaceutical targets, further research may help improve treatments of IH.


Asunto(s)
Angioplastia/efectos adversos , Hiperplasia/genética , Remodelación Vascular/genética , Animales , Arterias/metabolismo , Metilación de ADN , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Epigenómica , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Masculino , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/genética
20.
J Biomed Biotechnol ; 2011: 235216, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21941430

RESUMEN

Dysferlin plays an important role in repairing membrane damage elicited by laser irradiation, and dysferlin deficiency causes muscular dystrophy and associated cardiomyopathy. Proteins such as perforin, complement component C9, and bacteria-derived cytolysins, as well as the natural detergent saponin, can form large pores on the cell membrane via complexation with cholesterol. However, it is not clear whether dysferlin plays a role in repairing membrane damage induced by pore-forming reagents. In this study, we observed that dysferlin-deficient muscles recovered the tetanic force production to the same extent as their WT counterparts following a 5-min saponin exposure (50 µg/mL). Interestingly, the slow soleus muscles recovered significantly better than the fast extensor digitorum longus (EDL) muscles. Our data suggest that dysferlin is unlikely involved in repairing saponin-induced membrane damage and that the slow muscle is more efficient than the fast muscle in repairing such damage.


Asunto(s)
Proteínas de la Membrana/deficiencia , Músculo Esquelético/efectos de los fármacos , Saponinas/farmacología , Análisis de Varianza , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Membrana Celular/metabolismo , Disferlina , Femenino , Inmunohistoquímica , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA