Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nat Prod ; 80(5): 1248-1254, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28383891

RESUMEN

An investigation on the bioactive chemical constituents of the roots of Euphorbia fischeriana has been conducted, with 21 diterpenoids obtained using various chromatographic techniques. On the basis of spectroscopic data analysis, the new compounds were elucidated as four ent-abietane-type diterpenoids (1-4) and four tigliane-type diterpenoids (13-16). Also obtained were eight known ent-abietane (5-12) and five known tigliane (17-21) diterpenoids. The potential antituberculosis effects of these diterpenoids were evaluated using a Mycobacterium smegmatis model. The most potent compound according to the in vitro bioassay used was 17-hydroxyjolkinolide B (12) (MIC 1.5 µg/mL).


Asunto(s)
Abietanos/aislamiento & purificación , Abietanos/farmacología , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Euphorbia/química , Mycobacterium smegmatis/efectos de los fármacos , Raíces de Plantas/química , Abietanos/química , Antineoplásicos Fitogénicos/química , Diterpenos/química , Estructura Molecular , Mycobacterium smegmatis/química
2.
Phytochemistry ; 183: 112593, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33341664

RESUMEN

The roots of Euphorbia fischeriana known as "Langdu" in traditional Chinese medicine have been used for the treatment of tuberculosis in China. Through a bioactive phytochemical investigation of the roots of E. fischeriana, 15 diterpenoids were obtained by various chromatographic techniques. On the basis of wide spectroscopic data, including NMR, UV, IR, HR-ESI-MS, ECD and X-ray crystallography, all of the isolated compounds were elucidated to be ent-abietane diterpenoid analogs, including undescribed eupholides A-H and seven known diterpenoids. In the bioassay for anti-tuberculosis, eupholides F-H moderately inhibited the proliferation of Mycobacterium tuberculosis H37Ra, with the MIC determined to be 50 µM. Furthermore, eupholides G, ent-11α-hydroxyabieta-8(14), 13(15)-dien-16,12α-olide, and jolkinolide F significantly inhibited the lyase activity of human carboxylesterase 2 (HCE 2), with IC50 values of 7.3, 150, and 34.5 nM, respectively.


Asunto(s)
Antineoplásicos Fitogénicos , Euphorbia , Abietanos/farmacología , China , Diterpenos/farmacología , Estructura Molecular , Raíces de Plantas
3.
Clin Microbiol Infect ; 27(9): 1285-1292, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33160036

RESUMEN

OBJECTIVES: The hospital environment has been implicated in the enrichment and exchange of pathogens and antibiotic resistance, but its potential in shaping the symbiotic microbial community of hospital staff is unclear. This study was designed to evaluate the alteration of the gut microbiome in medical workers compared to non-medical controls. METHODS: A prospective cross-sectional cohort study was conducted in the intensive care unit (ICU) and other departments of a centre in north-eastern China. Faecal samples of 175 healthy medical workers-short-term (1-3 months) workers (n = 80) and long-term (>1 year) workers (n = 95)-and 80 healthy non-medical controls were analysed using 16S rRNA amplicon sequencing. The hospital environmental samples (n = 9) were also analysed. RESULTS: The gut microbiomes of medical workers exhibited marked deviations in diversity and alteration in microbial composition and function. Short-term workers showed significantly higher abundances of taxa such as Lactobacillus, Butyrivibrio, Clostridiaceae, Clostridium, Ruminococcus, Dialister, Bifidobacterium, Odoribacter, and Desulfovibrio and lower abundances of Bacteroides and Blautia than the controls. Long-term workers showed higher abundances of taxa such as Dialister, Veillonella, Clostridiaceae, Clostridium, Bilophila, Desulfovibrio, Pseudomonas, and Akkermansia and lower abundances of Bacteroides and Coprococcus than the controls. The medical workers' department (ICU versus non-ICU) and position (resident doctor versus nursing staff) also impacted their gut microbiome. Compared with the non-ICU workers, workers in the ICU showed a significant increase in the abundances of Dialister, Enterobacteriaceae, Phascolarctobacterium, Pseudomonas, Veillonella, and Streptococcus and a marked depletion of Faecalibacterium, Blautia, and Coprococcus. In contrast with the nursing staff, the resident doctors showed a significant increase in Erysipelotrichaceae and Clostridium and a decrease in Bacteroides, Blautia, and Ruminococcus in the gut microbiome. Moreover, we found that the microbiota of hospital environments potentially correlated with the workers' gut microbiota. CONCLUSIONS: Our findings demonstrated structural changes in the gut microbial community of medical workers.


Asunto(s)
Microbioma Gastrointestinal , Personal de Salud , Bacterias/clasificación , Estudios de Casos y Controles , China , Estudios Transversales , Disbiosis , Heces , Hospitales , Humanos , Estudios Prospectivos , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA