Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Hydrol Reg Stud ; 50: 101534, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38145056

RESUMEN

Study region: The Morava River basin, Czech Republic, Danube Basin, Central Europe. Study focus: Hydrological summer extremes represent a prominent natural hazard in Central Europe. River low flows constrain transport and water supply for agriculture, industry and society, and flood events are known to cause material damage and human loss. However, understanding changes in the frequency and magnitude of hydrological extremes is associated with great uncertainty due to the limited number of gauge observations. Here, we compile a tree-ring network to reconstruct the July-September baseflow variability of the Morava River from 1745 to 2018 CE. An ensemble of reconstructions was produced to assess the impact of calibration period length and trend on the long-term mean of reconstruction estimates. The final estimates represent the first baseflow reconstruction based on tree rings from the European continent. Simulated flows and historical documentation provide quantitative and qualitative validation of estimates prior to the 20th century. New hydrological insights for the region: The reconstructions indicate an increased variability of warm-season flow during the past 100 years, with the most extreme high and low flows occurring after the start of instrumental observations. When analyzing the entire reconstruction, the negative trend in baseflow displayed by gauges across the basin after 1960 is not unprecedented. We conjecture that even lower flows could likely occur in the future considering that pre-instrumental trends were not primarily driven by rising temperature (and the evaporative demand) in contrast to the recent trends.

2.
Sci Adv ; 7(6)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536204

RESUMEN

Drought is one of the main threats to food security and ecosystem productivity. During the past decades, Europe has experienced a series of droughts that caused substantial socioeconomic losses and environmental impacts. A key question is whether there are some similar characteristics in these droughts, especially when compared to the droughts that occurred further in the past. Answering this question is impossible with traditional single-index approaches and also short-term and often spatially inconsistent records. Here, using a multidimensional machine learning-based clustering algorithm and the hydrologic reconstruction of European drought, we determine the dominant drought types and investigate the changes in drought typology. We report a substantial increase in shorter warm-season droughts that are concurrent with an increase in potential evapotranspiration. If shifts reported here persist, then we will need new adaptive water management policies and, in the long run, we may observe considerable alterations in vegetation regimes and ecosystem functioning.

3.
Sci Rep ; 10(1): 12207, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764540

RESUMEN

Since the spring 2018, a large part of Europe has been in the midst of a record-setting drought. Using long-term observations, we demonstrate that the occurrence of the 2018-2019 (consecutive) summer drought is unprecedented in the last 250 years, and its combined impact on the growing season vegetation activities is stronger compared to the 2003 European drought. Using a suite of climate model simulation outputs, we underpin the role of anthropogenic warming on exacerbating the future risk of such a consecutive drought event. Under the highest Representative Concentration Pathway, (RCP 8.5), we notice a seven-fold increase in the occurrence of the consecutive droughts, with additional 40 ([Formula: see text]) million ha of cultivated areas being affected by such droughts, during the second half of the twenty-first century. The occurrence is significantly reduced under low and medium scenarios (RCP 2.6 and RCP 4.5), suggesting that an effective mitigation strategy could aid in reducing the risk of future consecutive droughts.

4.
Environ Int ; 128: 125-136, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31048130

RESUMEN

The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global climate and impact models from the Inter-Sectoral Impact Model Intercomparison Project, our analysis shows that the frequency and intensity of heat events increase, especially in tropical regions (geographic perspective) and developing countries (national perspective), even with global warming held to the 1.5 °C target. An additional 0.5 °C increase to the 2 °C warming target leads to >15% of global land area becoming exposed to levels of heat stress that affect human health; almost all countries in Europe will be subject to increased fire danger, with the duration of the fire season lasting 3.3 days longer; 106 countries are projected to experience an increase in the wheat production-damage index. Globally, about 38%, 50%, 46%, 36%, and 48% of the increases in exposure to health threats, wildfire, crop heat stress for soybeans, wheat, and maize could be avoided by constraining global warming to 1.5 °C rather than 2 °C. With high emissions, these impacts will continue to intensify over time, extending to almost all countries by the end of the 21st century: >95% of countries will face exposure to health-related heat stress, with India and Brazil ranked highest for integrated heat-stress exposure. The magnitude of the changes in fire season length and wildfire frequency are projected to increase substantially over 74% global land, with particularly strong effects in the United States, Canada, Brazil, China, Australia, and Russia. Our study should help facilitate climate policies that account for international variations in the heat-related threats posed by climate change.


Asunto(s)
Productos Agrícolas , Calentamiento Global , Incendios Forestales , Respuesta al Choque Térmico , Calor , Estaciones del Año , Triticum , Zea mays
5.
Sci Rep ; 8(1): 9499, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29934591

RESUMEN

Early 21st-century droughts in Europe have been broadly regarded as exceptionally severe, substantially affecting a wide range of socio-economic sectors. These extreme events were linked mainly to increases in temperature and record-breaking heatwaves that have been influencing Europe since 2000, in combination with a lack of precipitation during the summer months. Drought propagated through all respective compartments of the hydrological cycle, involving low runoff and prolonged soil moisture deficits. What if these recent droughts are not as extreme as previously thought? Using reconstructed droughts over the last 250 years, we show that although the 2003 and 2015 droughts may be regarded as the most extreme droughts driven by precipitation deficits during the vegetation period, their spatial extent and severity at a long-term European scale are less uncommon. This conclusion is evident in our concurrent investigation of three major drought types - meteorological (precipitation), agricultural (soil moisture) and hydrological (grid-scale runoff) droughts. Additionally, unprecedented drying trends for soil moisture and corresponding increases in the frequency of agricultural droughts are also observed, reflecting the recurring periods of high temperatures. Since intense and extended meteorological droughts may reemerge in the future, our study highlights concerns regarding the impacts of such extreme events when combined with persistent decrease in European soil moisture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA