Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
Nat Methods ; 15(9): 669-676, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30171252

RESUMEN

Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Laboratorios/normas , Reproducibilidad de los Resultados
3.
J Chem Inf Model ; 57(11): 2822-2832, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29019403

RESUMEN

Riboswitches are genetic regulatory elements mainly found in bacteria, which regulate gene expression based on the availability of a ligand. Purine-sensing riboswitches, including the guanine-sensing riboswitch (Gsw), possess tertiary interactions connecting the L2 and L3 loops. These interactions are important for ligand binding to the aptamer. However, atomic-level structural knowledge about the unbound state and how the tertiary interactions influence the conformational heterogeneity of the aptamer is still scarce. We performed replica exchange molecular dynamics simulations of the aptamer domain of wild-type Gsw and a G37A/C61U mutant, which exhibits destabilized tertiary interactions, at different Mg2+ concentrations with an aggregate simulation time of ∼16 µs, and subsequently obtained free-energy landscapes. Our data provide evidence that suggests that the unbound state of wild-type Gsw is conformationally rather homogeneous from a global viewpoint, yet the ligand binding site shows functionally necessary mobility required for ligand binding. For the mutant, the data suggest a heterogeneous ensemble, in particular without Mg2+. Hence, the tertiary interactions focus functional conformational variability on the binding site region of wild-type Gsw. Our data allow speculating that already the weakening of the tertiary interactions by two hydrogen bonds shifts the kinetics of folding from downhill folding without traps or intermediate states for wild-type Gsw to a folding including intermediates and misfolded structures for the mutant. A slowed-down folding of the aptamer might favor a decision during transcriptional regulation for the off-path, even if the ligand binds.


Asunto(s)
Guanina/metabolismo , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Riboswitch , Sitios de Unión , Enlace de Hidrógeno , Cinética , Ligandos , Temperatura
4.
J Mol Biol ; : 168546, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38508301

RESUMEN

IHMCIF (github.com/ihmwg/IHMCIF) is a data information framework that supports archiving and disseminating macromolecular structures determined by integrative or hybrid modeling (IHM), and making them Findable, Accessible, Interoperable, and Reusable (FAIR). IHMCIF is an extension of the Protein Data Bank Exchange/macromolecular Crystallographic Information Framework (PDBx/mmCIF) that serves as the framework for the Protein Data Bank (PDB) to archive experimentally determined atomic structures of biological macromolecules and their complexes with one another and small molecule ligands (e.g., enzyme cofactors and drugs). IHMCIF serves as the foundational data standard for the PDB-Dev prototype system, developed for archiving and disseminating integrative structures. It utilizes a flexible data representation to describe integrative structures that span multiple spatiotemporal scales and structural states with definitions for restraints from a variety of experimental methods contributing to integrative structural biology. The IHMCIF extension was created with the benefit of considerable community input and recommendations gathered by the Worldwide Protein Data Bank (wwPDB) Task Force for Integrative or Hybrid Methods (wwpdb.org/task/hybrid). Herein, we describe the development of IHMCIF to support evolving methodologies and ongoing advancements in integrative structural biology. Ultimately, IHMCIF will facilitate the unification of PDB-Dev data and tools with the PDB archive so that integrative structures can be archived and disseminated through PDB.

5.
Elife ; 122023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314846

RESUMEN

Guanylate binding proteins (GBPs) are soluble dynamin-like proteins that undergo a conformational transition for GTP-controlled oligomerization and disrupt membranes of intracellular parasites to exert their function as part of the innate immune system of mammalian cells. We apply neutron spin echo, X-ray scattering, fluorescence, and EPR spectroscopy as techniques for integrative dynamic structural biology to study the structural basis and mechanism of conformational transitions in the human GBP1 (hGBP1). We mapped hGBP1's essential dynamics from nanoseconds to milliseconds by motional spectra of sub-domains. We find a GTP-independent flexibility of the C-terminal effector domain in the µs-regime and resolve structures of two distinct conformers essential for an opening of hGBP1 like a pocket knife and for oligomerization. Our results on hGBP1's conformational heterogeneity and dynamics (intrinsic flexibility) deepen our molecular understanding relevant for its reversible oligomerization, GTP-triggered association of the GTPase-domains and assembly-dependent GTP-hydrolysis.


Asunto(s)
GTP Fosfohidrolasas , Proteínas de Unión al GTP , Animales , Humanos , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Hidrólisis , Guanosina Trifosfato/metabolismo , Biología , Mamíferos/metabolismo
6.
Elife ; 102021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33779550

RESUMEN

Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Biología Molecular/métodos , Imagen Individual de Molécula/métodos , Biología Molecular/instrumentación , Imagen Individual de Molécula/instrumentación
7.
Nat Commun ; 11(1): 5394, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106483

RESUMEN

FRET experiments can provide state-specific structural information of complex dynamic biomolecular assemblies. However, to overcome the sparsity of FRET experiments, they need to be combined with computer simulations. We introduce a program suite with (i) an automated design tool for FRET experiments, which determines how many and which FRET pairs should be used to minimize the uncertainty and maximize the accuracy of an integrative structure, (ii) an efficient approach for FRET-assisted coarse-grained structural modeling, and all-atom molecular dynamics simulations-based refinement, and (iii) a quantitative quality estimate for judging the accuracy of FRET-derived structures as opposed to precision. We benchmark our tools against simulated and experimental data of proteins with multiple conformational states and demonstrate an accuracy of ~3 Å RMSDCα against X-ray structures for sets of 15 to 23 FRET pairs. Free and open-source software for the introduced workflow is available at https://github.com/Fluorescence-Tools . A web server for FRET-assisted structural modeling of proteins is available at http://nmsim.de .


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas/química , Automatización , Simulación por Computador , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Modelos Estructurales , Conformación Proteica , Programas Informáticos , Navegador Web
8.
Structure ; 27(12): 1745-1759, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31780431

RESUMEN

Structures of biomolecular systems are increasingly computed by integrative modeling. In this approach, a structural model is constructed by combining information from multiple sources, including varied experimental methods and prior models. In 2019, a Workshop was held as a Biophysical Society Satellite Meeting to assess progress and discuss further requirements for archiving integrative structures. The primary goal of the Workshop was to build consensus for addressing the challenges involved in creating common data standards, building methods for federated data exchange, and developing mechanisms for validating integrative structures. The summary of the Workshop and the recommendations that emerged are presented here.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Modelos Moleculares , Conformación Proteica , Proteínas/química , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética
9.
PLoS One ; 12(6): e0179271, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28640851

RESUMEN

Riboswitches are genetic regulatory elements that control gene expression depending on ligand binding. The guanine-sensing riboswitch (Gsw) binds ligands at a three-way junction formed by paired regions P1, P2, and P3. Loops L2 and L3 cap the P2 and P3 helices and form tertiary interactions. Part of P1 belongs to the switching sequence dictating the fate of the mRNA. Previous studies revealed an intricate relationship between ligand binding and presence of the tertiary interactions, and between ligand binding and influence on the P1 region. However, no information is available on the interplay among these three main regions in Gsw. Here we show that stabilization of the L2-L3 region by tertiary interactions, and the ligand binding site by ligand binding, cooperatively influences the structural stability of terminal base pairs in the P1 region in the presence of Mg2+ ions. The results are based on molecular dynamics simulations with an aggregate simulation time of ~10 µs across multiple systems of the unbound state of the Gsw aptamer and a G37A/C61U mutant, and rigidity analyses. The results could explain why the three-way junction is a central structural element also in other riboswitches and how the cooperative effect could become contextual with respect to intracellular Mg2+ concentration. The results suggest that the transmission of allosteric information to P1 can be entropy-dominated.


Asunto(s)
Guanina/metabolismo , Conformación de Ácido Nucleico , Riboswitch , Aptámeros de Nucleótidos/genética , Relación Dosis-Respuesta a Droga , Enlace de Hidrógeno , Ligandos , Magnesio/farmacología , Simulación de Dinámica Molecular , Mutación
10.
Curr Opin Struct Biol ; 40: 163-185, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27939973

RESUMEN

Förster Resonance Energy Transfer (FRET) combined with single-molecule spectroscopy probes macromolecular structure and dynamics and identifies coexisting conformational states. We review recent methodological developments in integrative structural modeling by satisfying spatial restraints on networks of FRET pairs (hybrid-FRET). We discuss procedures to incorporate prior structural knowledge and to obtain optimal distance networks. Finally, a workflow for hybrid-FRET is presented that automates integrative structural modeling and experiment planning to put hybrid-FRET on rails. To test this workflow, we simulate realistic single-molecule experiments and resolve three protein conformers, exchanging at 30µs and 10ms, with accuracies of 1-3Å RMSD versus the target structure. Incorporation of data from other spectroscopies and imaging is also discussed.


Asunto(s)
Bioquímica/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Modelos Moleculares , Animales , Humanos
11.
Methods Enzymol ; 553: 163-91, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25726465

RESUMEN

Riboswitches are noncoding regulatory elements that control gene expression in response to the presence of metabolites, which bind to the aptamer domain. Metabolite binding appears to occur through a combination of conformational selection and induced fit mechanism. This demands to characterize the structural dynamics of the apo state of aptamer domains. In principle, molecular dynamics (MD) simulations can give insights at the atomistic level into the dynamics of the aptamer domain. However, it is unclear to what extent contemporary force fields can bias such insights. Here, we show that the Amber force field ff99 yields the best agreement with detailed experimental observations on differences in the structural dynamics of wild type and mutant aptamer domains of the guanine-sensing riboswitch (Gsw), including a pronounced influence of Mg2+. In contrast, applying ff99 with parmbsc0 and parmχOL modifications (denoted ff10) results in strongly damped motions and overly stable tertiary loop-loop interactions. These results are based on 58 MD simulations with an aggregate simulation time>11 µs, careful modeling of Mg2+ ions, and thorough statistical testing. Our results suggest that the moderate stabilization of the χ-anti region in ff10 can have an unwanted damping effect on functionally relevant structural dynamics of marginally stable RNA systems. This suggestion is supported by crystal structure analyses of Gsw aptamer domains that reveal χ torsions with high-anti values in the most mobile regions. We expect that future RNA force field development will benefit from considering marginally stable RNA systems and optimization toward good representations of dynamics in addition to structural characteristics.


Asunto(s)
Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Riboswitch , Aptámeros de Nucleótidos/química , Magnesio/química , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA