Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 39(24): e104983, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33103827

RESUMEN

Recent advances in molecular profiling provide descriptive datasets of complex differentiation landscapes including the haematopoietic system, but the molecular mechanisms defining progenitor states and lineage choice remain ill-defined. Here, we employed a cellular model of murine multipotent haematopoietic progenitors (Hoxb8-FL) to knock out 39 transcription factors (TFs) followed by RNA-Seq analysis, to functionally define a regulatory network of 16,992 regulator/target gene links. Focussed analysis of the subnetworks regulated by the B-lymphoid TF Ebf1 and T-lymphoid TF Gata3 revealed a surprising role in common activation of an early myeloid programme. Moreover, Gata3-mediated repression of Pax5 emerges as a mechanism to prevent precocious B-lymphoid differentiation, while Hox-mediated activation of Meis1 suppresses myeloid differentiation. To aid interpretation of large transcriptomics datasets, we also report a new method that visualises likely transitions that a progenitor will undergo following regulatory network perturbations. Taken together, this study reveals how molecular network wiring helps to establish a multipotent progenitor state, with experimental approaches and analysis tools applicable to dissecting a broad range of both normal and perturbed cellular differentiation landscapes.


Asunto(s)
Linaje de la Célula/fisiología , Sistema Hematopoyético/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula/genética , Epigenómica , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Ratones , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Factor de Transcripción PAX5/genética , Factor de Transcripción PAX5/metabolismo , Células Precursoras de Linfocitos B , Factores de Transcripción/genética
2.
Blood ; 136(15): 1735-1747, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32542325

RESUMEN

Hematopoietic stem cells (HSCs) have the potential to replenish the blood system for the lifetime of the organism. Their 2 defining properties, self-renewal and differentiation, are tightly regulated by the epigenetic machineries. Using conditional gene-knockout models, we demonstrated a critical requirement of lysine acetyltransferase 5 (Kat5, also known as Tip60) for murine HSC maintenance in both the embryonic and adult stages, which depends on its acetyltransferase activity. Genome-wide chromatin and transcriptome profiling in murine hematopoietic stem and progenitor cells revealed that Tip60 colocalizes with c-Myc and that Tip60 deletion suppress the expression of Myc target genes, which are associated with critical biological processes for HSC maintenance, cell cycling, and DNA repair. Notably, acetylated H2A.Z (acH2A.Z) was enriched at the Tip60-bound active chromatin, and Tip60 deletion induced a robust reduction in the acH2A.Z/H2A.Z ratio. These results uncover a critical epigenetic regulatory layer for HSC maintenance, at least in part through Tip60-dependent H2A.Z acetylation to activate Myc target genes.


Asunto(s)
Autorrenovación de las Células/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Lisina Acetiltransferasa 5/genética , Transactivadores/genética , Animales , Biomarcadores , Ciclo Celular , Diferenciación Celular/genética , Daño del ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Histonas/metabolismo , Lisina Acetiltransferasa 5/metabolismo , Ratones , Transporte de Proteínas , Transactivadores/metabolismo
3.
Circ Res ; 124(9): 1337-1349, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30892142

RESUMEN

RATIONALE: The ETS (E-26 transformation-specific) transcription factor ERG (ETS-related gene) is essential for endothelial homeostasis, driving expression of lineage genes and repressing proinflammatory genes. Loss of ERG expression is associated with diseases including atherosclerosis. ERG's homeostatic function is lineage-specific, because aberrant ERG expression in cancer is oncogenic. The molecular basis for ERG lineage-specific activity is unknown. Transcriptional regulation of lineage specificity is linked to enhancer clusters (super-enhancers). OBJECTIVE: To investigate whether ERG regulates endothelial-specific gene expression via super-enhancers. METHODS AND RESULTS: Chromatin immunoprecipitation with high-throughput sequencing in human umbilical vein endothelial cells showed that ERG binds 93% of super-enhancers ranked according to H3K27ac, a mark of active chromatin. These were associated with endothelial genes such as DLL4 (Delta-like protein 4), CLDN5 (claudin-5), VWF (von Willebrand factor), and CDH5 (VE-cadherin). Comparison between human umbilical vein endothelial cell and prostate cancer TMPRSS2 (transmembrane protease, serine-2):ERG fusion-positive human prostate epithelial cancer cell line (VCaP) cells revealed distinctive lineage-specific transcriptome and super-enhancer profiles. At a subset of endothelial super-enhancers (including DLL4 and CLDN5), loss of ERG results in significant reduction in gene expression which correlates with decreased enrichment of H3K27ac and MED (Mediator complex subunit)-1, and reduced recruitment of acetyltransferase p300. At these super-enhancers, co-occupancy of GATA2 (GATA-binding protein 2) and AP-1 (activator protein 1) is significantly lower compared with super-enhancers that remained constant following ERG inhibition. These data suggest distinct mechanisms of super-enhancer regulation in endothelial cells and highlight the unique role of ERG in controlling a core subset of super-enhancers. Most disease-associated single nucleotide polymorphisms from genome-wide association studies lie within noncoding regions and perturb transcription factor recognition sequences in relevant cell types. Analysis of genome-wide association studies data shows significant enrichment of risk variants for cardiovascular disease and other diseases, at ERG endothelial enhancers and super-enhancers. CONCLUSIONS: The transcription factor ERG promotes endothelial homeostasis via regulation of lineage-specific enhancers and super-enhancers. Enrichment of cardiovascular disease-associated single nucleotide polymorphisms at ERG super-enhancers suggests that ERG-dependent transcription modulates disease risk.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Línea Celular Tumoral , Células Cultivadas , Claudina-5/genética , Claudina-5/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Regulador Transcripcional ERG/genética
4.
EMBO J ; 35(6): 580-94, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26702099

RESUMEN

Metazoan development is regulated by transcriptional networks, which must respond to extracellular cues including cytokines. The JAK/STAT pathway is a highly conserved regulatory module, activated by many cytokines, in which tyrosine-phosphorylated STATs (pSTATs) function as transcription factors. However, the mechanisms by which STAT activation modulates lineage-affiliated transcriptional programs are unclear. We demonstrate that in the absence of thrombopoietin (TPO), tyrosine-unphosphorylated STAT5 (uSTAT5) is present in the nucleus where it colocalizes with CTCF and represses a megakaryocytic transcriptional program. TPO-mediated phosphorylation of STAT5 triggers its genome-wide relocation to STAT consensus sites with two distinct transcriptional consequences, loss of a uSTAT5 program that restrains megakaryocytic differentiation and activation of a canonical pSTAT5-driven program which includes regulators of apoptosis and proliferation. Transcriptional repression by uSTAT5 reflects restricted access of the megakaryocytic transcription factor ERG to target genes. These results identify a previously unrecognized mechanism of cytokine-mediated differentiation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica , Megacariocitos/efectos de los fármacos , Megacariocitos/fisiología , Factor de Transcripción STAT5/metabolismo , Trombopoyetina/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Ratones Endogámicos C57BL , Fosforilación , Procesamiento Proteico-Postraduccional
5.
Blood ; 131(21): e1-e11, 2018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-29588278

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) maintain the adult blood system, and their dysregulation causes a multitude of diseases. However, the differentiation journeys toward specific hematopoietic lineages remain ill defined, and system-wide disease interpretation remains challenging. Here, we have profiled 44 802 mouse bone marrow HSPCs using single-cell RNA sequencing to provide a comprehensive transcriptional landscape with entry points to 8 different blood lineages (lymphoid, megakaryocyte, erythroid, neutrophil, monocyte, eosinophil, mast cell, and basophil progenitors). We identified a common basophil/mast cell bone marrow progenitor and characterized its molecular profile at the single-cell level. Transcriptional profiling of 13 815 HSPCs from the c-Kit mutant (W41/W41) mouse model revealed the absence of a distinct mast cell lineage entry point, together with global shifts in cell type abundance. Proliferative defects were accompanied by reduced Myc expression. Potential compensatory processes included upregulation of the integrated stress response pathway and downregulation of proapoptotic gene expression in erythroid progenitors, thus providing a template of how large-scale single-cell transcriptomic studies can bridge between molecular phenotypes and quantitative population changes.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Mutación , Proteínas Proto-Oncogénicas c-kit/deficiencia , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Línea Celular Tumoral , Células Cultivadas , Perfilación de la Expresión Génica , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-kit/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Transcriptoma
6.
PLoS Comput Biol ; 15(11): e1007337, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31682597

RESUMEN

Gene expression governs cell fate, and is regulated via a complex interplay of transcription factors and molecules that change chromatin structure. Advances in sequencing-based assays have enabled investigation of these processes genome-wide, leading to large datasets that combine information on the dynamics of gene expression, transcription factor binding and chromatin structure as cells differentiate. While numerous studies focus on the effects of these features on broader gene regulation, less work has been done on the mechanisms of gene-specific transcriptional control. In this study, we have focussed on the latter by integrating gene expression data for the in vitro differentiation of murine ES cells to macrophages and cardiomyocytes, with dynamic data on chromatin structure, epigenetics and transcription factor binding. Combining a novel strategy to identify communities of related control elements with a penalized regression approach, we developed individual models to identify the potential control elements predictive of the expression of each gene. Our models were compared to an existing method and evaluated using the existing literature and new experimental data from embryonic stem cell differentiation reporter assays. Our method is able to identify transcriptional control elements in a gene specific manner that reflect known regulatory relationships and to generate useful hypotheses for further testing.


Asunto(s)
Diferenciación Celular/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Elementos Reguladores de la Transcripción/genética , Animales , Diferenciación Celular/fisiología , Cromatina/metabolismo , Bases de Datos Genéticas , Epigénesis Genética , Epigenómica , Regulación de la Expresión Génica/genética , Genoma , Macrófagos/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Miocitos Cardíacos/metabolismo , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
7.
EMBO J ; 33(11): 1212-26, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24760698

RESUMEN

Despite major advances in the generation of genome-wide binding maps, the mechanisms by which transcription factors (TFs) regulate cell type identity have remained largely obscure. Through comparative analysis of 10 key haematopoietic TFs in both mast cells and blood progenitors, we demonstrate that the largely cell type-specific binding profiles are not opportunistic, but instead contribute to cell type-specific transcriptional control, because (i) mathematical modelling of differential binding of shared TFs can explain differential gene expression, (ii) consensus binding sites are important for cell type-specific binding and (iii) knock-down of blood stem cell regulators in mast cells reveals mast cell-specific genes as direct targets. Finally, we show that the known mast cell regulators Mitf and c-fos likely contribute to the global reorganisation of TF binding profiles. Taken together therefore, our study elucidates how key regulatory TFs contribute to transcriptional programmes in several distinct mammalian cell types.


Asunto(s)
Regulación de la Expresión Génica/genética , Mastocitos/metabolismo , Células Madre/metabolismo , Factores de Transcripción/genética , Transcripción Genética/genética , Animales , Línea Celular , Perfilación de la Expresión Génica , Genes Reporteros , Estudio de Asociación del Genoma Completo , Hematopoyesis/genética , Ratones , Modelos Estadísticos , Motivos de Nucleótidos , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
8.
Blood ; 127(13): e12-23, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-26809507

RESUMEN

Comprehensive study of transcriptional control processes will be required to enhance our understanding of both normal and malignant hematopoiesis. Modern sequencing technologies have revolutionized our ability to generate genome-scale expression and histone modification profiles, transcription factor (TF)-binding maps, and also comprehensive chromatin-looping information. Many of these technologies, however, require large numbers of cells, and therefore cannot be applied to rare hematopoietic stem/progenitor cell (HSPC) populations. The stem cell factor-dependent multipotent progenitor cell line HPC-7 represents a well-recognized cell line model for HSPCs. Here we report genome-wide maps for 17 TFs, 3 histone modifications, DNase I hypersensitive sites, and high-resolution promoter-enhancer interactomes in HPC-7 cells. Integrated analysis of these complementary data sets revealed TF occupancy patterns of genomic regions involved in promoter-anchored loops. Moreover, preferential associations between pairs of TFs bound at either ends of chromatin loops led to the identification of 4 previously unrecognized protein-protein interactions between key blood stem cell regulators. All HPC-7 data sets are freely available both through standard repositories and a user-friendly Web interface. Together with previously generated genome-wide data sets, this study integrates HPC-7 data into a genomic resource on par with ENCODE tier 1 cell lines and, importantly, is the only current model with comprehensive genome-scale data that is relevant to HSPC biology.


Asunto(s)
Regulación de la Expresión Génica , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Animales , Sitios de Unión/genética , Células Cultivadas , Inmunoprecipitación de Cromatina , Embrión de Mamíferos , Genoma , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Unión Proteica/genética , Factores de Transcripción/genética
9.
Development ; 141(20): 4018-30, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25252941

RESUMEN

Transcription factors (TFs) act within wider regulatory networks to control cell identity and fate. Numerous TFs, including Scl (Tal1) and PU.1 (Spi1), are known regulators of developmental and adult haematopoiesis, but how they act within wider TF networks is still poorly understood. Transcription activator-like effectors (TALEs) are a novel class of genetic tool based on the modular DNA-binding domains of Xanthomonas TAL proteins, which enable DNA sequence-specific targeting and the manipulation of endogenous gene expression. Here, we report TALEs engineered to target the PU.1-14kb and Scl+40kb transcriptional enhancers as efficient new tools to perturb the expression of these key haematopoietic TFs. We confirmed the efficiency of these TALEs at the single-cell level using high-throughput RT-qPCR, which also allowed us to assess the consequences of both PU.1 activation and repression on wider TF networks during developmental haematopoiesis. Combined with comprehensive cellular assays, these experiments uncovered novel roles for PU.1 during early haematopoietic specification. Finally, transgenic mouse studies confirmed that the PU.1-14kb element is active at sites of definitive haematopoiesis in vivo and PU.1 is detectable in haemogenic endothelium and early committing blood cells. We therefore establish TALEs as powerful new tools to study the functionality of transcriptional networks that control developmental processes such as early haematopoiesis.


Asunto(s)
Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/fisiología , Proteínas Proto-Oncogénicas/fisiología , Transactivadores/fisiología , Animales , Diferenciación Celular , Técnicas de Cocultivo , Células Endoteliales/citología , Células Madre Hematopoyéticas , Humanos , Células K562 , Ratones , Ratones Transgénicos , Fenotipo , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Transgenes , Xanthomonas/metabolismo
10.
Nucleic Acids Res ; 43(Database issue): D1117-23, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25270877

RESUMEN

CODEX (http://codex.stemcells.cam.ac.uk/) is a user-friendly database for the direct access and interrogation of publicly available next-generation sequencing (NGS) data, specifically aimed at experimental biologists. In an era of multi-centre genomic dataset generation, CODEX provides a single database where these samples are collected, uniformly processed and vetted. The main drive of CODEX is to provide the wider scientific community with instant access to high-quality NGS data, which, irrespective of the publishing laboratory, is directly comparable. CODEX allows users to immediately visualize or download processed datasets, or compare user-generated data against the database's cumulative knowledge-base. CODEX contains four types of NGS experiments: transcription factor chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-Seq), histone modification ChIP-Seq, DNase-Seq and RNA-Seq. These are largely encompassed within two specialized repositories, HAEMCODE and ESCODE, which are focused on haematopoiesis and embryonic stem cell samples, respectively. To date, CODEX contains over 1000 samples, including 221 unique TFs and 93 unique cell types. CODEX therefore provides one of the most complete resources of publicly available NGS data for the direct interrogation of transcriptional programmes that regulate cellular identity and fate in the context of mammalian development, homeostasis and disease.


Asunto(s)
Bases de Datos Genéticas , Células Madre Embrionarias/metabolismo , Células Madre Hematopoyéticas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Inmunoprecipitación de Cromatina , Hematopoyesis/genética , Histonas/metabolismo , Humanos , Internet , Ratones , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Programas Informáticos
11.
EMBO J ; 31(22): 4318-33, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23064151

RESUMEN

Cell fate decisions during haematopoiesis are governed by lineage-specific transcription factors, such as RUNX1, SCL/TAL1, FLI1 and C/EBP family members. To gain insight into how these transcription factors regulate the activation of haematopoietic genes during embryonic development, we measured the genome-wide dynamics of transcription factor assembly on their target genes during the RUNX1-dependent transition from haemogenic endothelium (HE) to haematopoietic progenitors. Using a Runx1-/- embryonic stem cell differentiation model expressing an inducible Runx1 gene, we show that in the absence of RUNX1, haematopoietic genes bind SCL/TAL1, FLI1 and C/EBPß and that this early priming is required for correct temporal expression of the myeloid master regulator PU.1 and its downstream targets. After induction, RUNX1 binds to numerous de novo sites, initiating a local increase in histone acetylation and rapid global alterations in the binding patterns of SCL/TAL1 and FLI1. The acquisition of haematopoietic fate controlled by Runx1 therefore does not represent the establishment of a new regulatory layer on top of a pre-existing HE program but instead entails global reorganization of lineage-specific transcription factor assemblies.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Epigénesis Genética/fisiología , Hematopoyesis/fisiología , Acetilación , Animales , Secuencia de Bases , Línea Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Células Madre Embrionarias/fisiología , Epigénesis Genética/genética , Hematopoyesis/genética , Histonas/metabolismo , Ratones , Datos de Secuencia Molecular , Unión Proteica , Factores de Transcripción/fisiología
12.
Nucleic Acids Res ; 42(22): 13513-24, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25428352

RESUMEN

Combinatorial transcription factor (TF) binding is essential for cell-type-specific gene regulation. However, much remains to be learned about the mechanisms of TF interactions, including to what extent constrained spacing and orientation of interacting TFs are critical for regulatory element activity. To examine the relative prevalence of the 'enhanceosome' versus the 'TF collective' model of combinatorial TF binding, a comprehensive analysis of TF binding site sequences in large scale datasets is necessary. We developed a motif-pair discovery pipeline to identify motif co-occurrences with preferential distance(s) between motifs in TF-bound regions. Utilizing a compendium of 289 mouse haematopoietic TF ChIP-seq datasets, we demonstrate that haematopoietic-related motif-pairs commonly occur with highly conserved constrained spacing and orientation between motifs. Furthermore, motif clustering revealed specific associations for both heterotypic and homotypic motif-pairs with particular haematopoietic cell types. We also showed that disrupting the spacing between motif-pairs significantly affects transcriptional activity in a well-known motif-pair-E-box and GATA, and in two previously unknown motif-pairs with constrained spacing-Ets and Homeobox as well as Ets and E-box. In this study, we provide evidence for widespread sequence-specific TF pair interaction with DNA that conforms to the 'enhanceosome' model, and furthermore identify associations between specific haematopoietic cell-types and motif-pairs.


Asunto(s)
Hematopoyesis/genética , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Sitios de Unión , Células Sanguíneas/metabolismo , Inmunoprecipitación de Cromatina , ADN/química , ADN/metabolismo , Ratones , Motivos de Nucleótidos , Análisis de Secuencia de ADN
13.
Blood ; 122(15): 2694-703, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23974202

RESUMEN

The ETS transcription factor ERG plays a central role in definitive hematopoiesis, and its overexpression in acute myeloid leukemia (AML) is associated with a stem cell signature and poor prognosis. Yet how ERG causes leukemia is unclear. Here we show that pan-hematopoietic ERG expression induces an early progenitor myeloid leukemia in transgenic mice. Integrated genome-scale analysis of gene expression and ERG binding profiles revealed that ERG activates a transcriptional program similar to human AML stem/progenitor cells and to human AML with high ERG expression. This transcriptional program was associated with activation of RAS that was required for leukemia cells growth in vitro and in vivo. We further show that ERG induces expression of the Pim1 kinase oncogene through a novel hematopoietic enhancer validated in transgenic mice and human CD34(+) normal and leukemic cells. Pim1 inhibition disrupts growth and induces apoptosis of ERG-expressing leukemic cells. The importance of the ERG/PIM1 axis is further underscored by the poorer prognosis of AML highly expressing ERG and PIM1. Thus, integrative genomic analysis demonstrates that ERG causes myeloid progenitor leukemia characterized by an induction of leukemia stem cell transcriptional programs. Pim1 and the RAS pathway are potential therapeutic targets of these high-risk leukemias.


Asunto(s)
Regulación Leucémica de la Expresión Génica/fisiología , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Transactivadores/genética , Factores de Transcripción/metabolismo , Animales , Antineoplásicos , Elementos de Facilitación Genéticos/genética , Genómica , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Células Progenitoras Mieloides/fisiología , Trasplante de Neoplasias , Transcripción Genética/fisiología , Regulador Transcripcional ERG
14.
Blood ; 119(3): 894-903, 2012 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-22117042

RESUMEN

The endothelial ETS transcription factor Erg plays an important role in homeostasis and angiogenesis by regulating many endothelial functions including survival and junction stability. Here we show that Erg regulates endothelial cell (EC) migration. Transcriptome profiling of Erg-deficient ECs identified ∼ 80 genes involved in cell migration as candidate Erg targets, including many regulators of Rho- GTPases. Inhibition of Erg expression in HUVECs resulted in decreased migration in vitro, while Erg overexpression using adenovirus caused increased migration. Live-cell imaging of Erg-deficient HUVECs showed a reduction in lamellipodia, in line with decreased motility. Both actin and tubulin cytoskeletons were disrupted in Erg-deficient ECs, with a dramatic increase in tubulin acetylation. Among the most significant microarray hits was the cytosolic histone deacetylase 6 (HDAC6), a regulator of cell migration. Chromatin immunoprecipitation (ChIP) and transactivation studies demonstrated that Erg regulates HDAC6 expression. Rescue experiments confirmed that HDAC6 mediates the Erg-dependent regulation of tubulin acetylation and actin localization. In vivo, inhibition of Erg expression in angiogenic ECs resulted in decreased HDAC6 expression with increased tubulin acetylation. Thus, we have identified a novel function for the transcription factor Erg in regulating HDAC6 and multiple pathways essential for EC migration and angiogenesis.


Asunto(s)
Biomarcadores/metabolismo , Movimiento Celular , Endotelio Vascular/metabolismo , Regulación de la Expresión Génica , Histona Desacetilasas/genética , Neovascularización Fisiológica , Transducción de Señal , Transactivadores/metabolismo , Acetilación , Actinas/metabolismo , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , Endotelio Vascular/citología , Perfilación de la Expresión Génica , Histona Desacetilasa 6 , Histona Desacetilasas/metabolismo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transactivadores/antagonistas & inhibidores , Transactivadores/genética , Regulador Transcripcional ERG , Venas Umbilicales/citología , Venas Umbilicales/metabolismo
15.
Blood ; 120(19): 4006-17, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-22932805

RESUMEN

The coding single nucleotide polymorphism GFI136N in the human gene growth factor independence 1 (GFI1) is present in 3%-7% of whites and increases the risk for acute myeloid leukemia (AML) by 60%. We show here that GFI136N, in contrast to GFI136S, lacks the ability to bind to the Gfi1 target gene that encodes the leukemia-associated transcription factor Hoxa9 and fails to initiate histone modifications that regulate HoxA9 expression. Consistent with this, AML patients heterozygous for the GFI136N variant show increased HOXA9 expression compared with normal controls. Using ChipSeq, we demonstrate that GFI136N specific epigenetic changes are also present in other genes involved in the development of AML. Moreover, granulomonocytic progenitors, a bone marrow subset from which AML can arise in humans and mice, show a proliferative expansion in the presence of the GFI136N variant. In addition, granulomonocytic progenitors carrying the GFI136N variant allele have altered gene expression patterns and differ in their ability to grow after transplantation. Finally, GFI136N can accelerate a K-RAS driven fatal myeloproliferative disease in mice. Our data suggest that the presence of a GFI136N variant allele induces a preleukemic state in myeloid precursors by deregulating the expression of Hoxa9 and other AML-related genes.


Asunto(s)
Proteínas de Unión al ADN/genética , Epigénesis Genética , Proteínas de Homeodominio/genética , Trastornos Mieloproliferativos/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Transcripción/genética , Animales , Análisis por Conglomerados , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Hematopoyesis/genética , Histonas/metabolismo , Humanos , Ratones , Ratones Transgénicos , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patología , Trastornos Mieloproliferativos/metabolismo , Trastornos Mieloproliferativos/mortalidad , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factores de Transcripción/metabolismo
16.
Eur J Prev Cardiol ; 31(1): 77-99, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37607255

RESUMEN

AIMS: Hypertensive pregnancy is associated with increased risks of developing a range of vascular disorders in later life. Understanding when hypertensive target organ damage first emerges could guide optimal timing of preventive interventions. This review identifies evidence of hypertensive target organ damage across cardiac, vascular, cerebral, and renal systems at different time points from pregnancy to postpartum. METHODS AND RESULTS: Systematic review of Ovid/MEDLINE, EMBASE, and ClinicalTrials.gov up to and including February 2023 including review of reference lists. Identified articles underwent evaluation via a synthesis without meta-analysis using a vote-counting approach based on direction of effect, regardless of statistical significance. Risk of bias was assessed for each outcome domain, and only higher quality studies were used for final analysis. From 7644 articles, 76 studies, including data from 1 742 698 pregnancies, were identified of high quality that reported either blood pressure trajectories or target organ damage during or after a hypertensive pregnancy. Left ventricular hypertrophy, white matter lesions, proteinuria, and retinal microvasculature changes were first evident in women during a hypertensive pregnancy. Cardiac, cerebral, and retinal changes were also reported in studies performed during the early and late post-partum period despite reduction in blood pressure early postpartum. Cognitive dysfunction was first reported late postpartum. CONCLUSION: The majority of target organ damage reported during a hypertensive pregnancy remains evident throughout the early and late post-partum period despite variation in blood pressure. Early peri-partum strategies may be required to prevent or reverse target organ damage in women who have had a hypertensive pregnancy.


This review identifies evidence of damage to the heart, brain, and blood vessels during and after hypertensive disorders of pregnancy and compares the pattern of changes that occur to blood pressure variations. Changes in the heart, brain, and blood vessels are first found in women during a hypertensive pregnancy and are also reported early after pregnancy. The majority of target organ damage reported remains evident long after pregnancy despite variation in blood pressure levels.


Asunto(s)
Hipertensión Inducida en el Embarazo , Complicaciones Cardiovasculares del Embarazo , Femenino , Humanos , Embarazo , Periodo Posparto , Hipertensión Inducida en el Embarazo/epidemiología , Hipertensión Inducida en el Embarazo/patología , Complicaciones Cardiovasculares del Embarazo/epidemiología , Complicaciones Cardiovasculares del Embarazo/patología , Factores de Tiempo
17.
J Biol Chem ; 287(15): 12331-42, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22337883

RESUMEN

The interaction of transcription factors with specific DNA sequences is critical for activation of gene expression programs. In endothelial cells (EC), the transcription factor NF-κB is important in the switch from quiescence to activation, and is tightly controlled to avoid excessive inflammation and organ damage. Here we describe a novel mechanism that controls the activation of NF-κB in EC. The transcription factor Erg, the most highly expressed ETS member in resting EC, controls quiescence by repressing proinflammatory gene expression. Focusing on intercellular adhesion molecule 1(ICAM)-1 as a model, we identify two ETS binding sites (EBS -118 and -181) within the ICAM-1 promoter required for Erg-mediated repression. We show that Erg binds to both EBS -118 and EBS -181, the latter located within the NF-κB binding site. Interestingly, inhibition of Erg expression in quiescent EC results in increased NF-κB-dependent ICAM-1 expression, indicating that Erg represses basal NF-κB activity. Erg prevents NF-κB p65 from binding to the ICAM-1 promoter, suggesting a direct mechanism of interference. Gene set enrichment analysis of transcriptome profiles of Erg and NF-κB-dependent genes, together with chromatin immunoprecipitation (ChIP) studies, reveals that this mechanism is common to other proinflammatory genes, including cIAP-2 and IL-8. These results identify a role for Erg as a gatekeeper controlling vascular inflammation, thus providing an important barrier to protect against inappropriate endothelial activation.


Asunto(s)
Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/fisiología , Transactivadores/fisiología , Factor de Transcripción ReIA/metabolismo , Sitios de Unión , Unión Competitiva , Células Cultivadas , ADN/química , Ensayo de Cambio de Movilidad Electroforética , Perfilación de la Expresión Génica , Genes Reporteros , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Luciferasas de Renilla/biosíntesis , Luciferasas de Renilla/genética , Regiones Promotoras Genéticas , Unión Proteica , Fase de Descanso del Ciclo Celular , Transactivadores/química , Transactivadores/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética , Regulador Transcripcional ERG
18.
Cell Genom ; 3(12): 100426, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38116120

RESUMEN

Acute myeloid leukemia (AML) and myeloid neoplasms develop through acquisition of somatic mutations that confer mutation-specific fitness advantages to hematopoietic stem and progenitor cells. However, our understanding of mutational effects remains limited to the resolution attainable within immunophenotypically and clinically accessible bulk cell populations. To decipher heterogeneous cellular fitness to preleukemic mutational perturbations, we performed single-cell RNA sequencing of eight different mouse models with driver mutations of myeloid malignancies, generating 269,048 single-cell profiles. Our analysis infers mutation-driven perturbations in cell abundance, cellular lineage fate, cellular metabolism, and gene expression at the continuous resolution, pinpointing cell populations with transcriptional alterations associated with differentiation bias. We further develop an 11-gene scoring system (Stem11) on the basis of preleukemic transcriptional signatures that predicts AML patient outcomes. Our results demonstrate that a single-cell-resolution deep characterization of preleukemic biology has the potential to enhance our understanding of AML heterogeneity and inform more effective risk stratification strategies.

19.
Science ; 381(6659): eadd7564, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37590359

RESUMEN

The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.


Asunto(s)
Desarrollo Embrionario , Saco Vitelino , Femenino , Humanos , Embarazo , Coagulación Sanguínea/genética , Macrófagos , Saco Vitelino/citología , Saco Vitelino/metabolismo , Desarrollo Embrionario/genética , Atlas como Asunto , Expresión Génica , Perfilación de la Expresión Génica , Hematopoyesis/genética , Hígado/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA