Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 184(1): 207-225.e24, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33333019

RESUMEN

Regulation of biological processes typically incorporates mechanisms that initiate and terminate the process and, where understood, these mechanisms often involve feedback control. Regulation of transcription is a fundamental cellular process where the mechanisms involved in initiation have been studied extensively, but those involved in arresting the process are poorly understood. Modeling of the potential roles of RNA in transcriptional control suggested a non-equilibrium feedback control mechanism where low levels of RNA promote condensates formed by electrostatic interactions whereas relatively high levels promote dissolution of these condensates. Evidence from in vitro and in vivo experiments support a model where RNAs produced during early steps in transcription initiation stimulate condensate formation, whereas the burst of RNAs produced during elongation stimulate condensate dissolution. We propose that transcriptional regulation incorporates a feedback mechanism whereby transcribed RNAs initially stimulate but then ultimately arrest the process.


Asunto(s)
Retroalimentación Fisiológica , ARN/genética , Transcripción Genética , Animales , Complejo Mediador/metabolismo , Ratones , Modelos Biológicos , Células Madre Embrionarias de Ratones/metabolismo , ARN/biosíntesis , Electricidad Estática
2.
Cell ; 175(7): 1842-1855.e16, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30449618

RESUMEN

Gene expression is controlled by transcription factors (TFs) that consist of DNA-binding domains (DBDs) and activation domains (ADs). The DBDs have been well characterized, but little is known about the mechanisms by which ADs effect gene activation. Here, we report that diverse ADs form phase-separated condensates with the Mediator coactivator. For the OCT4 and GCN4 TFs, we show that the ability to form phase-separated droplets with Mediator in vitro and the ability to activate genes in vivo are dependent on the same amino acid residues. For the estrogen receptor (ER), a ligand-dependent activator, we show that estrogen enhances phase separation with Mediator, again linking phase separation with gene activation. These results suggest that diverse TFs can interact with Mediator through the phase-separating capacity of their ADs and that formation of condensates with Mediator is involved in gene activation.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Receptores de Estrógenos/metabolismo , Activación Transcripcional/fisiología , Animales , Células HEK293 , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Factor 3 de Transcripción de Unión a Octámeros/genética , Dominios Proteicos , Receptores de Estrógenos/genética
3.
Cell ; 171(7): 1573-1588.e28, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29224777

RESUMEN

There is considerable evidence that chromosome structure plays important roles in gene control, but we have limited understanding of the proteins that contribute to structural interactions between gene promoters and their enhancer elements. Large DNA loops that encompass genes and their regulatory elements depend on CTCF-CTCF interactions, but most enhancer-promoter interactions do not employ this structural protein. Here, we show that the ubiquitously expressed transcription factor Yin Yang 1 (YY1) contributes to enhancer-promoter structural interactions in a manner analogous to DNA interactions mediated by CTCF. YY1 binds to active enhancers and promoter-proximal elements and forms dimers that facilitate the interaction of these DNA elements. Deletion of YY1 binding sites or depletion of YY1 protein disrupts enhancer-promoter looping and gene expression. We propose that YY1-mediated enhancer-promoter interactions are a general feature of mammalian gene control.


Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Factor de Transcripción YY1/metabolismo , Animales , Factor de Unión a CCCTC/metabolismo , Células Madre Embrionarias/metabolismo , Humanos , Ratones
4.
Mol Cell ; 83(14): 2449-2463.e13, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37402367

RESUMEN

Transcription factors (TFs) orchestrate the gene expression programs that define each cell's identity. The canonical TF accomplishes this with two domains, one that binds specific DNA sequences and the other that binds protein coactivators or corepressors. We find that at least half of TFs also bind RNA, doing so through a previously unrecognized domain with sequence and functional features analogous to the arginine-rich motif of the HIV transcriptional activator Tat. RNA binding contributes to TF function by promoting the dynamic association between DNA, RNA, and TF on chromatin. TF-RNA interactions are a conserved feature important for vertebrate development and disrupted in disease. We propose that the ability to bind DNA, RNA, and protein is a general property of many TFs and is fundamental to their gene regulatory function.


Asunto(s)
ARN , Factores de Transcripción , Factores de Transcripción/metabolismo , ARN/metabolismo , Sitios de Unión , Unión Proteica , ADN/genética
5.
Mol Cell ; 75(3): 549-561.e7, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398323

RESUMEN

Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci and how the universal phenomenon of phase separation might regulate this process.


Asunto(s)
Cromatina/genética , Elementos de Facilitación Genéticos , Factores de Transcripción/genética , Transcripción Genética , Animales , Secuencia de Bases/genética , Sitios de Unión/genética , ADN/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Genómica , Ratones , Células Madre Embrionarias de Ratones
6.
Mol Cell ; 76(5): 753-766.e6, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31563432

RESUMEN

The gene expression programs that define the identity of each cell are controlled by master transcription factors (TFs) that bind cell-type-specific enhancers, as well as signaling factors, which bring extracellular stimuli to these enhancers. Recent studies have revealed that master TFs form phase-separated condensates with the Mediator coactivator at super-enhancers. Here, we present evidence that signaling factors for the WNT, TGF-ß, and JAK/STAT pathways use their intrinsically disordered regions (IDRs) to enter and concentrate in Mediator condensates at super-enhancers. We show that the WNT coactivator ß-catenin interacts both with components of condensates and DNA-binding factors to selectively occupy super-enhancer-associated genes. We propose that the cell-type specificity of the response to signaling is mediated in part by the IDRs of the signaling factors, which cause these factors to partition into condensates established by the master TFs and Mediator at genes with prominent roles in cell identity.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Complejo Mediador/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica/fisiología , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Complejo Mediador/fisiología , Factores de Transcripción STAT/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Proteína smad3/metabolismo , Proteínas de la Superfamilia TGF-beta/metabolismo , Transcripción Genética , Vía de Señalización Wnt , beta Catenina/metabolismo
7.
Nat Chem Biol ; 20(3): 291-301, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37770698

RESUMEN

Diverse mechanisms have been described for selective enrichment of biomolecules in membrane-bound organelles, but less is known about mechanisms by which molecules are selectively incorporated into biomolecular assemblies such as condensates that lack surrounding membranes. The chemical environments within condensates may differ from those outside these bodies, and if these differed among various types of condensate, then the different solvation environments would provide a mechanism for selective distribution among these intracellular bodies. Here we use small molecule probes to show that different condensates have distinct chemical solvating properties and that selective partitioning of probes in condensates can be predicted with deep learning approaches. Our results demonstrate that different condensates harbor distinct chemical environments that influence the distribution of molecules, show that clues to condensate chemical grammar can be ascertained by machine learning and suggest approaches to facilitate development of small molecule therapeutics with optimal subcellular distribution and therapeutic benefit.


Asunto(s)
Condensados Biomoleculares , Aprendizaje Automático
8.
Nature ; 586(7829): 440-444, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32698189

RESUMEN

Methyl CpG binding protein 2 (MeCP2) is a key component of constitutive heterochromatin, which is crucial for chromosome maintenance and transcriptional silencing1-3. Mutations in the MECP2 gene cause the progressive neurodevelopmental disorder Rett syndrome3-5, which is associated with severe mental disability and autism-like symptoms that affect girls during early childhood. Although previously thought to be a dense and relatively static structure1,2, heterochromatin is now understood to exhibit properties consistent with a liquid-like condensate6,7. Here we show that MeCP2 is a dynamic component of heterochromatin condensates in cells, and is stimulated by DNA to form liquid-like condensates. MeCP2 contains several domains that contribute to the formation of condensates, and mutations in MECP2 that lead to Rett syndrome disrupt the ability of MeCP2 to form condensates. Condensates formed by MeCP2 selectively incorporate and concentrate heterochromatin cofactors rather than components of euchromatic transcriptionally active condensates. We propose that MeCP2 enhances the separation of heterochromatin and euchromatin through its condensate partitioning properties, and that disruption of condensates may be a common consequence of mutations in MeCP2 that cause Rett syndrome.


Asunto(s)
Heterocromatina/metabolismo , Discapacidad Intelectual/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Mutación , Inmunidad Adaptativa , Animales , Femenino , Inmunidad Innata , Discapacidad Intelectual/patología , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Síndrome de Rett/genética
9.
Nature ; 572(7770): 543-548, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31391587

RESUMEN

The synthesis of pre-mRNA by RNA polymerase II (Pol II) involves the formation of a transcription initiation complex, and a transition to an elongation complex1-4. The large subunit of Pol II contains an intrinsically disordered C-terminal domain that is phosphorylated by cyclin-dependent kinases during the transition from initiation to elongation, thus influencing the interaction of the C-terminal domain with different components of the initiation or the RNA-splicing apparatus5,6. Recent observations suggest that this model provides only a partial picture of the effects of phosphorylation of the C-terminal domain7-12. Both the transcription-initiation machinery and the splicing machinery can form phase-separated condensates that contain large numbers of component molecules: hundreds of molecules of Pol II and mediator are concentrated in condensates at super-enhancers7,8, and large numbers of splicing factors are concentrated in nuclear speckles, some of which occur at highly active transcription sites9-12. Here we investigate whether the phosphorylation of the Pol II C-terminal domain regulates the incorporation of Pol II into phase-separated condensates that are associated with transcription initiation and splicing. We find that the hypophosphorylated C-terminal domain of Pol II is incorporated into mediator condensates and that phosphorylation by regulatory cyclin-dependent kinases reduces this incorporation. We also find that the hyperphosphorylated C-terminal domain is preferentially incorporated into condensates that are formed by splicing factors. These results suggest that phosphorylation of the Pol II C-terminal domain drives an exchange from condensates that are involved in transcription initiation to those that are involved in RNA processing, and implicates phosphorylation as a mechanism that regulates condensate preference.


Asunto(s)
Complejo Mediador/química , Complejo Mediador/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Empalme del ARN , Transcripción Genética , Animales , Línea Celular , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Humanos , Complejo Mediador/genética , Ratones , Fosforilación , Dominios Proteicos , ARN Polimerasa II/genética , Factores de Empalme de ARN/química , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
11.
Nature ; 511(7511): 616-20, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25043025

RESUMEN

Tumour oncogenes include transcription factors that co-opt the general transcriptional machinery to sustain the oncogenic state, but direct pharmacological inhibition of transcription factors has so far proven difficult. However, the transcriptional machinery contains various enzymatic cofactors that can be targeted for the development of new therapeutic candidates, including cyclin-dependent kinases (CDKs). Here we present the discovery and characterization of a covalent CDK7 inhibitor, THZ1, which has the unprecedented ability to target a remote cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7. Cancer cell-line profiling indicates that a subset of cancer cell lines, including human T-cell acute lymphoblastic leukaemia (T-ALL), have exceptional sensitivity to THZ1. Genome-wide analysis in Jurkat T-ALL cells shows that THZ1 disproportionally affects transcription of RUNX1 and suggests that sensitivity to THZ1 may be due to vulnerability conferred by the RUNX1 super-enhancer and the key role of RUNX1 in the core transcriptional regulatory circuitry of these tumour cells. Pharmacological modulation of CDK7 kinase activity may thus provide an approach to identify and treat tumour types that are dependent on transcription for maintenance of the oncogenic state.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Fenilendiaminas/farmacología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimología , Pirimidinas/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Cisteína/metabolismo , Humanos , Células Jurkat , Fosforilación/efectos de los fármacos
12.
Nat Chem Biol ; 12(10): 876-84, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27571479

RESUMEN

Cyclin-dependent kinases 12 and 13 (CDK12 and CDK13) play critical roles in the regulation of gene transcription. However, the absence of CDK12 and CDK13 inhibitors has hindered the ability to investigate the consequences of their inhibition in healthy cells and cancer cells. Here we describe the rational design of a first-in-class CDK12 and CDK13 covalent inhibitor, THZ531. Co-crystallization of THZ531 with CDK12-cyclin K indicates that THZ531 irreversibly targets a cysteine located outside the kinase domain. THZ531 causes a loss of gene expression with concurrent loss of elongating and hyperphosphorylated RNA polymerase II. In particular, THZ531 substantially decreases the expression of DNA damage response genes and key super-enhancer-associated transcription factor genes. Coincident with transcriptional perturbation, THZ531 dramatically induced apoptotic cell death. Small molecules capable of specifically targeting CDK12 and CDK13 may thus help identify cancer subtypes that are particularly dependent on their kinase activities.


Asunto(s)
Anilidas/farmacología , Proteína Quinasa CDC2/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Cisteína/química , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Anilidas/síntesis química , Anilidas/química , Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/metabolismo , Muerte Celular/efectos de los fármacos , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/metabolismo , Cisteína/metabolismo , Daño del ADN , Humanos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química
13.
Dev Cell ; 57(14): 1776-1788.e8, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35809564

RESUMEN

A multitude of cellular processes involve biomolecular condensates, which has led to the suggestion that diverse pathogenic mutations may dysregulate condensates. Although proof-of-concept studies have identified specific mutations that cause condensate dysregulation, the full scope of the pathological genetic variation that affects condensates is not yet known. Here, we comprehensively map pathogenic mutations to condensate-promoting protein features in putative condensate-forming proteins and find over 36,000 pathogenic mutations that plausibly contribute to condensate dysregulation in over 1,200 Mendelian diseases and 550 cancers. This resource captures mutations presently known to dysregulate condensates, and experimental tests confirm that additional pathological mutations do indeed affect condensate properties in cells. These findings suggest that condensate dysregulation may be a pervasive pathogenic mechanism underlying a broad spectrum of human diseases, provide a strategy to identify proteins and mutations involved in pathologically altered condensates, and serve as a foundation for mechanistic insights into disease and therapeutic hypotheses.


Asunto(s)
Proteínas , Humanos , Mutación/genética
14.
Nat Commun ; 13(1): 7522, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473871

RESUMEN

Insulin receptor (IR) signaling is central to normal metabolic control and is dysregulated in metabolic diseases such as type 2 diabetes. We report here that IR is incorporated into dynamic clusters at the plasma membrane, in the cytoplasm and in the nucleus of human hepatocytes and adipocytes. Insulin stimulation promotes further incorporation of IR into these dynamic clusters in insulin-sensitive cells but not in insulin-resistant cells, where both IR accumulation and dynamic behavior are reduced. Treatment of insulin-resistant cells with metformin, a first-line drug used to treat type 2 diabetes, can rescue IR accumulation and the dynamic behavior of these clusters. This rescue is associated with metformin's role in reducing reactive oxygen species that interfere with normal dynamics. These results indicate that changes in the physico-mechanical features of IR clusters contribute to insulin resistance and have implications for improved therapeutic approaches.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Receptor de Insulina , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Insulina
15.
Nature ; 431(7004): 99-104, 2004 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-15343339

RESUMEN

DNA-binding transcriptional regulators interpret the genome's regulatory code by binding to specific sequences to induce or repress gene expression. Comparative genomics has recently been used to identify potential cis-regulatory sequences within the yeast genome on the basis of phylogenetic conservation, but this information alone does not reveal if or when transcriptional regulators occupy these binding sites. We have constructed an initial map of yeast's transcriptional regulatory code by identifying the sequence elements that are bound by regulators under various conditions and that are conserved among Saccharomyces species. The organization of regulatory elements in promoters and the environment-dependent use of these elements by regulators are discussed. We find that environment-specific use of regulatory elements predicts mechanistic models for the function of a large population of yeast's transcriptional regulators.


Asunto(s)
Genoma Fúngico , Elementos de Respuesta/genética , Saccharomyces/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Secuencia de Bases , Sitios de Unión , Secuencia Conservada/genética , Células Eucariotas/metabolismo , Regiones Promotoras Genéticas/genética , Saccharomyces/clasificación , Especificidad por Sustrato
16.
Science ; 368(6497): 1386-1392, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32554597

RESUMEN

The nucleus contains diverse phase-separated condensates that compartmentalize and concentrate biomolecules with distinct physicochemical properties. Here, we investigated whether condensates concentrate small-molecule cancer therapeutics such that their pharmacodynamic properties are altered. We found that antineoplastic drugs become concentrated in specific protein condensates in vitro and that this occurs through physicochemical properties independent of the drug target. This behavior was also observed in tumor cells, where drug partitioning influenced drug activity. Altering the properties of the condensate was found to affect the concentration and activity of drugs. These results suggest that selective partitioning and concentration of small molecules within condensates contributes to drug pharmacodynamics and that further understanding of this phenomenon may facilitate advances in disease therapy.


Asunto(s)
Antineoplásicos/farmacología , Núcleo Celular/metabolismo , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Antineoplásicos/uso terapéutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Science ; 361(6400)2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29930091

RESUMEN

Super-enhancers (SEs) are clusters of enhancers that cooperatively assemble a high density of the transcriptional apparatus to drive robust expression of genes with prominent roles in cell identity. Here we demonstrate that the SE-enriched transcriptional coactivators BRD4 and MED1 form nuclear puncta at SEs that exhibit properties of liquid-like condensates and are disrupted by chemicals that perturb condensates. The intrinsically disordered regions (IDRs) of BRD4 and MED1 can form phase-separated droplets, and MED1-IDR droplets can compartmentalize and concentrate the transcription apparatus from nuclear extracts. These results support the idea that coactivators form phase-separated condensates at SEs that compartmentalize and concentrate the transcription apparatus, suggest a role for coactivator IDRs in this process, and offer insights into mechanisms involved in the control of key cell-identity genes.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Proteínas Intrínsecamente Desordenadas/metabolismo , Subunidad 1 del Complejo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Secuencia Conservada , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos/efectos de los fármacos , Recuperación de Fluorescencia tras Fotoblanqueo , Regulación de la Expresión Génica/efectos de los fármacos , Glicoles/farmacología , Células HEK293 , Humanos , Inmunoprecipitación , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Subunidad 1 del Complejo Mediador/química , Subunidad 1 del Complejo Mediador/genética , Ratones , Imagen Molecular , Células 3T3 NIH , Proteínas Nucleares/química , Proteínas Nucleares/genética , Serina/química , Serina/genética , Transactivadores/química , Transactivadores/genética , Factores de Transcripción/química , Factores de Transcripción/genética
18.
Science ; 350(6263): 978-81, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26516199

RESUMEN

Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Transcripción Genética , Factor de Transcripción YY1/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Línea Celular , Secuencia de Consenso , ADN/metabolismo , Células Madre Embrionarias/metabolismo , Ratones
19.
Stem Cell Reports ; 5(5): 763-775, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26603904

RESUMEN

Hundreds of transcription factors (TFs) are expressed in each cell type, but cell identity can be induced through the activity of just a small number of core TFs. Systematic identification of these core TFs for a wide variety of cell types is currently lacking and would establish a foundation for understanding the transcriptional control of cell identity in development, disease, and cell-based therapy. Here, we describe a computational approach that generates an atlas of candidate core TFs for a broad spectrum of human cells. The potential impact of the atlas was demonstrated via cellular reprogramming efforts where candidate core TFs proved capable of converting human fibroblasts to retinal pigment epithelial-like cells. These results suggest that candidate core TFs from the atlas will prove a useful starting point for studying transcriptional control of cell identity and reprogramming in many human cell types.


Asunto(s)
Reprogramación Celular , Células Epiteliales/citología , Fibroblastos/citología , Epitelio Pigmentado de la Retina/citología , Factores de Transcripción/genética , Línea Celular , Simulación por Computador , Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Humanos , Epitelio Pigmentado de la Retina/metabolismo
20.
Science ; 313(5786): 533-6, 2006 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-16873666

RESUMEN

Cellular signal transduction pathways modify gene expression programs in response to changes in the environment, but the mechanisms by which these pathways regulate populations of genes under their control are not entirely understood. We present evidence that most mitogen-activated protein kinases and protein kinase A subunits become physically associated with the genes that they regulate in the yeast (Saccharomyces cerevisiae) genome. The ability to detect this interaction of signaling kinases with target genes can be used to more precisely and comprehensively map the regulatory circuitry that eukaryotic cells use to respond to their environment.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Núcleo Celular/enzimología , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico , Activación Enzimática , Sistema de Señalización de MAP Quinasas , Presión Osmótica , Regiones Promotoras Genéticas , Proteínas Quinasas/metabolismo , Precursores de Proteínas/farmacología , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/farmacología , Factores de Transcripción/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA