Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Appl Opt ; 63(10): A78-A85, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568514

RESUMEN

To meet the requirements of integrated and high-resolution focusing devices for passive millimeter-wave (PMMW) imaging systems, a polarization-multiplexed high-resolution near-field focusing metasurface lens is proposed. Metasurface units consist of two dielectric layers and three metal layers and are designed with a multiarm windmill structure. This design allows the units to independently control the electromagnetic response of incident x-polarized and y-polarized waves while maintaining a thickness of only 0.16λ (2 mm). The metasurface lens that can achieve dual-channel near-field focusing was designed by combining the focusing principle of the metasurface lens and phase superposition principle based on the above design. The lens consists of 30×30 units and has a size of 120×120m m 2. According to the simulation results, the lens is able to focus the y-polarized waves of 24 GHz at z=50m m plane with a focal spot size of 0.68λ (8.5 mm), and the focusing beam efficiency is 35.2%. Similarly, the x-polarized waves of 24 GHz are focused at z=70m m plane with a focal spot size of 0.72λ (9 mm), and the focusing beam efficiency is 40.7%. The proposed metasurface lens is promising for applications in PMMW imaging systems, medical sensors, automotive millimeter-wave radar, and other related fields, owing to the characteristics of high resolution, compact size, and multifunctionality.

2.
Opt Express ; 30(10): 16134-16144, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221464

RESUMEN

Slow wave and localized field are conducive to terahertz (THz) modulators with deep and fast modulation. Here we propose an electrically controlled THz modulator with slow wave effect and localized field composed of a high electron mobility transistor (HEMT) integrated metasurface. Unlike previously proposed schemes to realize slow wave effect electrically, this proposal controls the resonant modes directly through HEMT switches instead of the surrounding materials, leading to a modulation depth of 96% and a group delay of 10.4ps. The confined electric field where HEMT is embedded, and the slow wave effect, work together to pave a new mechanism for THz modulators with high performance.

3.
Opt Lett ; 46(23): 5790-5793, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851891

RESUMEN

In this Letter, we propose an approach to generate high-purity orbital angular momentum (OAM) vortex waves using an amplitude-and-phase metasurface (APM). By varying the square split ring opening and orientation angles, the cross-polarized reflection response of the proposed structure can yield full phase and amplitude coverage. Based on the traditional phase-only metasurface (POM), the Chebyshev synthesis method (CSM) is applied to array the metasurface amplitude distribution. Metasurfaces with modes l of 1, 2, 3, and 4 are designed. Compared with the POM, the APM can effectively improve the vortex beam quality and OAM mode purity. The measured results agree well with full-wave simulations. The presented method provides a new, to the best of our knowledge, way to design high-purity OAM generators based on metasurfaces.

4.
Sensors (Basel) ; 20(3)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041152

RESUMEN

In order to solve the low-sensitivity problem of the dielectric constant with the resonant cavity method, a sensor based on a substrate-integrated waveguide structure loaded with a multi-complementary open resonant ring is proposed. With the enhanced resonance characteristics of the sensor, this design realized the measurement of complex dielectric constants in a wide range. The frequency selectivity of the sensor is improved by the high-quality factor of the substrate-integrated waveguide. By loading three complementary resonant rings with different opening directions in the ground plane, a deeper notch and better out-of-band suppression are achieved. The effect of the complex dielectric constant on both resonant frequency and quality factor is discussed by calculating the material under test with a known dielectric constant. Simulation and experimental results show that a resonance frequency offset of 102 MHz for the per unit dielectric constant is achieved. A wide frequency offset is the prerequisite for accurate measurement. The measurement results of four plates match well with the standard values, with a relative error of the real part of the dielectric constant of less than 2% and an error of less than 0.0099 for the imaginary part.

5.
Sensors (Basel) ; 20(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003596

RESUMEN

In order to improve the sensitivity of liquid dielectric constant measurements, a liquid dielectric constant sensor based on a cubic container structure is proposed for the first time. The cubic container, which consists of a dielectric substrate with a split resonant ring (SRR) and microstrip lines, can enhance the electric field intensity in the measuring area. High sensitivity can be obtained from measuring the dielectric constant with the characteristics of the structure resonate. The research results show that the resonant frequency of the sensor is shifted from 7.69 GHz to 5.70 GHz, with about a 2 GHz frequency offset, when the dielectric constant of the sample varied from 1 to 10. A resonance frequency offset of 200 MHz for the per unit dielectric constant is achieved, which is excellent regarding performance. The permittivity of oil with a different metal content is measured by using the relation between the fitted permittivity and the resonant frequency. The relative error is less than 1.5% and the sensitivity of measuring is up to 3.45%.

6.
Appl Opt ; 51(28): 6844-7, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23033101

RESUMEN

Absorption loss in optical components, particularly in optical coatings, is a limiting factor in high-power laser applications. The uniformity of optical coatings becomes more and more important as large-diameter optical devices are used widely. In this paper, the photothermal detuning technique used for absorption uniformity measurement of optical thin films is developed for the first time. Experiments are conducted with a highly reflective coating used in 514 nm to measure the photothermal detuning signal and to evaluate the absorption at 514 nm by detecting the spectral shift with a probe beam at a wavelength of 632.8 nm. The relative absorption at different points on the sample surface can be measured by moving the sample two-dimensionally, and we use the measured data to make the absorption image. The results show that the designed experimental system can be used to analyze the absorption uniformity of optical coatings. The obtained images reflect the absorption uniformity of the sample well. The absorption uniformities of the two samples analyzed in this experiment are different. The film coated on fused silica is better. The research provides a powerful and convenient tool for absorption uniformity measurement of optical thin film.

7.
Appl Opt ; 47(2): 188-94, 2008 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-18188200

RESUMEN

A simple and sensitive photothermal technique--photothermal detuning, in which the spectral shift of an optical coating caused by absorption-induced temperature rise is used to measure the photothermal signal--and its application for the absorption measurement of coated optical components are developed theoretically and experimentally in detail for the first time to the best of our knowledge. The theoretical description of the photothermal detuning signal with a continuous-wave modulated laser beam excitation is presented. Experiments are conducted with a highly reflective coating used at 532 nm to measure the photothermal detuning signal and to evaluate the absorption at 532 nm by detecting the spectral shift with a probe beam at a wavelength of 632.8 nm. By optimizing the incident angle of the probe beam, the amplitude of the photothermal detuning signal is maximized. Good agreement is obtained between the experimental results and the theoretical predictions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA