Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(38): 23970-23981, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32883877

RESUMEN

Fruit set is the process whereby ovaries develop into fruits after pollination and fertilization. The process is induced by the phytohormone gibberellin (GA) in tomatoes, as determined by the constitutive GA response mutant procera However, the role of GA on the metabolic behavior in fruit-setting ovaries remains largely unknown. This study explored the biochemical mechanisms of fruit set using a network analysis of integrated transcriptome, proteome, metabolome, and enzyme activity data. Our results revealed that fruit set involves the activation of central carbon metabolism, with increased hexoses, hexose phosphates, and downstream metabolites, including intermediates and derivatives of glycolysis, the tricarboxylic acid cycle, and associated organic and amino acids. The network analysis also identified the transcriptional hub gene SlHB15A, that coordinated metabolic activation. Furthermore, a kinetic model of sucrose metabolism predicted that the sucrose cycle had high activity levels in unpollinated ovaries, whereas it was shut down when sugars rapidly accumulated in vacuoles in fruit-setting ovaries, in a time-dependent manner via tonoplastic sugar carriers. Moreover, fruit set at least partly required the activity of fructokinase, which may pull fructose out of the vacuole, and this could feed the downstream pathways. Collectively, our results indicate that GA cascades enhance sink capacities, by up-regulating central metabolic enzyme capacities at both transcriptional and posttranscriptional levels. This leads to increased sucrose uptake and carbon fluxes for the production of the constituents of biomass and energy that are essential for rapid ovary growth during the initiation of fruit set.


Asunto(s)
Frutas , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Carbono/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Redes y Vías Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Sacarosa/metabolismo , Transcriptoma/genética
2.
Plant Cell Physiol ; 58(1): 22-34, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28082517

RESUMEN

Gametogenesis is a key step in the production of ovules or pollen in higher plants. The molecular aspects of gametogenesis are well characterized in the model plant Arabidopsis; however, little information is known in tomato, which is a model plant for fleshy fruit development. In this study, we characterized a tomato (Solanum lycopersicum L.) γ-ray mutant, sexual sterility (Slses), that exhibited both male and female sterility. Morphological analysis revealed that the Slses mutant forms incomplete ovules and wilted anthers devoid of pollen grains at the anthesis stage. Genetic and next-generation sequencing analyses revealed that the Slses mutant carried a 13 bp deletion within the first exon of a homolog of SPOROCYTELESS/NOZZLE (SPL/NZZ), which plays an important role in gametogenesis in Arabidopsis. Complementation analysis in which the complete SlSES genomic region was introduced into the Slses mutant fully restored normal phenotypes, demonstrating that Solyc07g063670 is responsible for the Slses mutation. SlSES probably act as a transcriptional repressor because of an EAR motif at the C-terminal region. Gene expression levels of WUSCHEL (SlWUS) and INNER NO OUTER (SlINO), both of which are required for ovule development, were dramatically reduced in the early stages of pistil development in the Slses mutant, suggesting a positive regulatory role for SlSES in the transcription of gametogenesis genes and differences in the regulation of INO (SlINO) and integument development by SPL/NZZ (SLSES) between Arabidopsis and tomato. Taken together, our results indicate that SlSES is a novel tomato gametogenesis gene essential for both male and female gametogenesis.


Asunto(s)
Mutación , Óvulo Vegetal/genética , Infertilidad Vegetal/genética , Polen/genética , Solanum lycopersicum/genética , Secuencia de Aminoácidos , Secuencia de Bases , Flores/genética , Flores/crecimiento & desarrollo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/efectos de la radiación , Modelos Genéticos , Óvulo Vegetal/crecimiento & desarrollo , Fenotipo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polen/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
3.
Plant J ; 83(2): 237-51, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25996898

RESUMEN

Fruit set in angiosperms marks the transition from flowering to fruit production and a commitment to seed dispersal. Studies with Solanum lycopersicum (tomato) fruit have shown that pollination and subsequent fertilization induce the biosynthesis of several hormones, including auxin and gibberellins (GAs), which stimulate fruit set. Circumstantial evidence suggests that the gaseous hormone ethylene may also influence fruit set, but this has yet to be substantiated with molecular or mechanistic data. Here, we examined fruit set at the biochemical and genetic levels, using hormone and inhibitor treatments, and mutants that affect auxin or ethylene signaling. The expression of system-1 ethylene biosynthetic genes and the production of ethylene decreased during pollination-dependent fruit set in wild-type tomato and during pollination-independent fruit set in the auxin hypersensitive mutant iaa9-3. Blocking ethylene perception in emasculated flowers, using either the ethylene-insensitive Sletr1-1 mutation or 1-methylcyclopropene (1-MCP), resulted in elongated parthenocarpic fruit and increased cell expansion, whereas simultaneous treatment with the GA biosynthesis inhibitor paclobutrazol (PAC) inhibited parthenocarpy. Additionally, the application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) to pollinated ovaries reduced fruit set. Furthermore, Sletr1-1 parthenocarpic fruits did not exhibit increased auxin accumulation, but rather had elevated levels of bioactive GAs, most likely reflecting an increase in transcripts encoding the GA-biosynthetic enzyme SlGA20ox3, as well as a reduction in the levels of transcripts encoding the GA-inactivating enzymes SlGA2ox4 and SlGA2ox5. Taken together, our results suggest that ethylene plays a role in tomato fruit set by suppressing GA metabolism.


Asunto(s)
Etilenos/metabolismo , Giberelinas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Flores/metabolismo , Genes de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Polinización
4.
Cells ; 11(9)2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35563726

RESUMEN

Parthenocarpy, the pollination-independent fruit set, can raise the productivity of the fruit set even under adverse factors during the reproductive phase. The application of plant hormones stimulates parthenocarpy, but artificial hormones incur extra financial and labour costs to farmers and can induce the formation of deformed fruit. This study examines the performance of parthenocarpic mutants having no transcription factors of SlIAA9 and SlTAP3 and sldella that do not have the protein-coding gene, SlDELLA, in tomato (cv. Micro-Tom). At 0 day after the flowering (DAF) stage and DAFs after pollination, the sliaa9 mutant demonstrated increased pistil development compared to the other two mutants and wild type (WT). In contrast to WT and the other mutants, the sliaa9 mutant with pollination efficiently stimulated the build-up of auxin and GAs after flowering. Alterations in both transcript and metabolite profiles existed for WT with and without pollination, while the three mutants without pollination demonstrated the comparable metabolomic status of pollinated WT. Network analysis showed key modules linked to photosynthesis, sugar metabolism and cell proliferation. Equivalent modules were noticed in the famous parthenocarpic cultivars 'Severianin', particularly for emasculated samples. Our discovery indicates that controlling the genes and metabolites proffers future breeding policies for tomatoes.


Asunto(s)
Solanum lycopersicum , División Celular , Frutas , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Fotosíntesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Azúcares/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma
5.
Plant Biotechnol (Tokyo) ; 36(3): 143-153, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31768116

RESUMEN

Tomato is one of vegetables crops that has the highest value in the world. Thus, researchers are continually improving the agronomical traits of tomato fruits. Auxins and gibberellins regulate plant growth and development. Aux/indole-3-acetic acid 9 (SlIAA9) and the gene encoding the DELLA protein (SlDELLA) are well-known genes that regulate plant growth and development, including fruit set and enlargement by cell division and cell expansion. The absence of tomato SlIAA9 and SlDELLA results in abnormal shoot growth and leaf shape and giving rise to parthenocarpy. To investigate the key regulators that exist up- or downstream of SlIAA9 and SlDELLA signaling pathways for tomato growth and development, we performed gene co-expression network analysis by using publicly available microarray data to extract genes that are directly connected to the SlIAA9 and SlDELLA nodes, respectively. Consequently, we chose a gene in the group of heat-shock protein (HSP)70s that was connected with the SlIAA9 node and SlDELLA node in each co-expression network. To validate the extent of effect of SlHSP70-1 on tomato growth and development, overexpressing lines of the target gene were generated. We found that overexpression of the targeted SlHSP70-1 resulted in internode elongation, but the overexpressing lines did not show abnormal leaf shape, fruit set, or fruit size when compared with that of the wild type. Our study suggests that the targeted SlHSP70-1 is likely to function in shoot growth, like SlIAA9 and SlDELLA, but it does not contribute to parthenocarpy as well as fruit set. Our study also shows that only a single SlHSP70 out of 25 homologous genes could change the shoot length.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA