Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 189(2): 1005-1020, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35218363

RESUMEN

Ubiquitination is an important post-translational protein modification. Although BROAD-COMPLEX, TRAMTRACK AND BRIC A BRAC and TRANSCRIPTION ADAPTOR PUTATIVE ZINC FINGER domain protein 2 (BT2) is involved in many biological processes, its role in apple (Malus domestic) root formation remains unclear. Here, we revealed that MdBT2 inhibits adventitious root (AR) formation through interacting with AUXIN RESPONSE FACTOR8 (MdARF8) and INDOLE-3-ACETIC ACID INDUCIBLE3 (MdIAA3). MdBT2 facilitated MdARF8 ubiquitination and degradation through the 26S proteasome pathway and negatively regulated GRETCHEN HAGEN 3.1 (MdGH3.1) and MdGH3.6 expression. MdARF8 regulates AR formation through inducing transcription of MdGH3s (MdGH3.1, MdGH3.2, MdGH3.5, and MdGH3.6). In addition, MdBT2 facilitated MdIAA3 stability and slightly promoted its interaction with MdARF8. MdIAA3 inhibited AR formation by forming heterodimers with MdARF8 as well as other MdARFs (MdARF5, MdARF6, MdARF7, and MdARF19). Our findings reveal that MdBT2 acts as a negative regulator of AR formation in apple.


Asunto(s)
Malus , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Ubiquitinación
2.
Plant Physiol ; 190(1): 305-318, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35674376

RESUMEN

The ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) plays a central role in light-induced anthocyanin biosynthesis. However, the upstream regulatory factors of COP1 remain poorly understood, particularly in horticultural plants. Here, we identified an MdCOP1-interacting protein, BROAD-COMPLEX, TRAMTRACK AND BRIC A BRAC2 (MdBT2), in apple (Malus domestica). MdBT2 is a BTB protein that directly interacts with and stabilizes MdCOP1 by inhibiting self-ubiquitination. Fluorescence observation and cell fractionation assays showed that MdBT2 increased the abundance of MdCOP1 in the nucleus. Moreover, a series of phenotypic analyses indicated that MdBT2 promoted MdCOP1-mediated ubiquitination and degradation of the MdMYB1 transcription factor, inhibiting the expression of anthocyanin biosynthesis genes and anthocyanin accumulation. Overall, our findings reveal a molecular mechanism by which MdBT2 positively regulates MdCOP1, providing insight into MdCOP1-mediated anthocyanin biosynthesis.


Asunto(s)
Malus , Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitinación
3.
Plant J ; 106(3): 689-705, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33548154

RESUMEN

Protein S-acyltransferases (PATs) are a category of eukaryotic transmembrane proteins that mediate the S-acylation of their target proteins. S-acylation, commonly known as palmitoylation, is a reversible protein modification that regulates the membrane association and function of target proteins. However, the functions and mechanisms of PATs in apple (Malus domestica) remain poorly understood. In this study, an MdPAT family member, MdPAT16, was identified and shown to have palmitoyltransferase activity. We demonstrated that this gene responds to salt stress and that its expression improves plant salt stress resistance. In addition, its overexpression significantly promotes the accumulation of soluble sugars. The same phenotypes were observed in transgenic tissue culture seedlings, transgenic roots, and Arabidopsis thaliana that ectopically expressed MdPAT16. MdPAT16 was shown to interact with MdCBL1 and stabilize MdCBL1 protein levels through palmitoylation. The N-terminal sequence of MdCBL1 contains a palmitoylation site, and its N-terminal deletion led to changes in MdCBL1 protein stability and subcellular localization. The phenotypes of MdCBL1 transgenic roots and transiently injected apple fruits were fully consistent with the sugar accumulation phenotype of MdPAT16. Mutation of the palmitoylation site interfered with this phenotype. These findings suggest that MdPAT16 palmitoylates its downstream target proteins, improving their stability. This may be a missing link in the plant salt stress response pathway and have an important impact on fruit quality.


Asunto(s)
Aciltransferasas/metabolismo , Frutas/metabolismo , Malus/enzimología , Proteínas de Plantas/metabolismo , Azúcares/metabolismo , Frutas/enzimología , Malus/metabolismo , Redes y Vías Metabólicas , Proteínas de Plantas/fisiología , Tolerancia a la Sal
4.
Plant J ; 105(6): 1566-1581, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33314379

RESUMEN

Abscisic acid (ABA) induces chlorophyll degradation and leaf senescence; however, the molecular mechanism remains poorly understood, especially in woody plants. In this study, we found that MdABI5 plays an essential role in the regulation of ABA-triggered leaf senescence in Malus domestica (apple). Through yeast screening, three transcription factors, MdBBX22, MdWRKY40 and MdbZIP44, were found to interact directly with MdABI5 in vitro and in vivo. Physiological and biochemical assays showed that MdBBX22 delayed leaf senescence in two pathways. First, MdBBX22 interacted with MdABI5 to inhibit the transcriptional activity of MdABI5 on the chlorophyll catabolic genes MdNYE1 and MdNYC1, thus negatively regulating chlorophyll degradation and leaf senescence. Second, MdBBX22 interacted with MdHY5 to interfere with the transcriptional activation of MdHY5 on MdABI5, thereby inhibiting the expression of MdABI5, which also contributed to the delay of leaf senescence. MdWRKY40 and MdbZIP44 were identified as positive regulators of leaf senescence. They accelerated MdABI5-promoted leaf senescence through the same regulatory pathways, i.e., interacting with MdABI5 to enhance the transcriptional activity of MdABI5 on MdNYE1 and MdNYC1. Taken together, our results suggest that MdABI5 works with its positive or negative interaction partners to regulate ABA-mediated leaf senescence in apple, in which it acts as a core regulator. The antagonistic regulation pathways ensure that plants respond to external stresses flexibly and efficiently. Our results provide a concept for further study on the regulation mechanisms of leaf senescence.


Asunto(s)
Ácido Abscísico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Malus/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Envejecimiento/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Malus/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/fisiología , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
5.
Plant J ; 106(5): 1414-1430, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33759251

RESUMEN

Jasmonate (JA) induces the biosynthesis of anthocyanin and proanthocyanidin. MdMYB9 is essential for modulating the accumulation of both anthocyanin and proanthocyanidin in apple, but the molecular mechanism for induction of anthocyanin and proanthocyanidin biosynthesis by JA is unclear. In this study, we discovered an apple telomere-binding protein (MdTRB1) to be the interacting protein of MdMYB9. A series of biological assays showed that MdTRB1 acted as a positive modulator of anthocyanin and proanthocyanidin accumulation, and is dependent on MdMYB9. MdTRB1 interacted with MdMYB9 and enhanced the activation activity of MdMYB9 to its downstream genes. In addition, we found that the JA signaling repressor MdJAZ1 interacted with MdTRB1 and interfered with the interaction between MdTRB1 and MdMYB9, therefore negatively modulating MdTRB1-promoted biosynthesis of anthocyanin and proanthocyanidin. These results show that the JAZ1-TRB1-MYB9 module dynamically modulates JA-mediated accumulation of anthocyanin and proanthocyanidin. Taken together, our data further expand the functional study of TRB1 and provide insights for further studies of the modulation of anthocyanin and proanthocyanidin biosynthesis by JA.


Asunto(s)
Acetatos/farmacología , Antocianinas/metabolismo , Ciclopentanos/farmacología , Malus/genética , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Proantocianidinas/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Alineación de Secuencia , Proteínas de Unión a Telómeros/genética
6.
Plant Physiol ; 186(1): 750-766, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33764451

RESUMEN

Nitrate acts as a vital signal molecule in the modulation of plant growth and development. The phytohormones gibberellin (GA) is also involved in this process. However, the exact molecular mechanism of how nitrate and GA signaling pathway work together in regulating plant growth remains poorly understood. In this study, we found that a nitrate-responsive BTB/TAZ protein MdBT2 participates in regulating nitrate-induced plant growth in apple (Malus × domestica). Yeast two-hybridization, protein pull-down, and bimolecular fluorescence complementation (BiFC) assays showed that MdBT2 interacts with a DELLA protein MdRGL3a, which is required for the ubiquitination and degradation of MdRGL3a proteins via a 26S proteasome-dependent pathway. Furthermore, heterologous expression of MdBT2 partially rescued growth inhibition caused by overexpression of MdRGL3a in Arabidopsis. Taken together, our findings indicate that MdBT2 promotes nitrate-induced plant growth partially through reducing the abundance of the DELLA protein MdRGL3a.


Asunto(s)
Malus/genética , Nitratos/metabolismo , Proteínas de Plantas/genética , Malus/crecimiento & desarrollo , Malus/metabolismo , Proteínas de Plantas/metabolismo
7.
Plant J ; 101(3): 573-589, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31571281

RESUMEN

Drought stress induces anthocyanin biosynthesis in many plant species, but the underlying molecular mechanism remains unclear. Ethylene response factors (ERFs) play key roles in plant growth and various stress responses, including affecting anthocyanin biosynthesis. Here, we characterized an ERF protein, MdERF38, which is involved in drought stress-induced anthocyanin biosynthesis. Biochemical and molecular analyses showed that MdERF38 interacted with MdMYB1, a positive modulator of anthocyanin biosynthesis, and facilitated the binding of MdMYB1 to its target genes. Therefore, MdERF38 promoted anthocyanin biosynthesis in response to drought stress. Furthermore, we found that MdBT2, a negative modulator of anthocyanin biosynthesis, decreased MdERF38-promoted anthocyanin biosynthesis by accelerating the degradation of the MdERF38 protein. In summary, our data provide a mechanism for drought stress-induced anthocyanin biosynthesis that involves dynamic modulation of MdERF38 at both transcriptional and post-translational levels.


Asunto(s)
Antocianinas/metabolismo , Etilenos/metabolismo , Malus/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Sequías , Malus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética
8.
BMC Plant Biol ; 21(1): 15, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407118

RESUMEN

BACKGROUND: In plants, CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is a key negative regulator in photoperiod response. However, the biological function of COP1-interacting protein 1 (CIP1) and the regulatory mechanism of the CIP1-COP1 interaction are not fully understood. RESULTS: Here, we identified the apple MdCIP1 gene based on the Arabidopsis AtCIP1 gene. Expression pattern analysis showed that MdCIP1 was constitutively expressed in various tissues of apple, and responded to stress and hormone signals at the transcriptional level. Ectopic expression of MdCIP1 complemented the phenotypes of the Arabidopsis cip1 mutant, and MdCIP1 inhibited anthocyanin biosynthesis in apple calli. In addition, the biochemical assay demonstrated that MdCIP1 could interact with MdCOP1 protein by their coiled-coil domain, and MdCIP1-OX/cop1-4 had a similar phenotype in photomorphogenesis with the cop1-4 mutant, suggesting that COP1 is epistatic to CIP1. Furthermore, the transient transformation assay indicated that MdCIP1 repressed anthocyanin biosynthesis in an MdCOP1-mediated pathway. CONCLUSION: Take together, this study finds that MdCIP1 acts as a repressor in regulating hypocotyl elongation and anthocyanin biosynthesis through MdCOP1 in apple.


Asunto(s)
Antocianinas/biosíntesis , Antocianinas/genética , Arabidopsis/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Malus/crecimiento & desarrollo , Malus/genética , Reguladores del Crecimiento de las Plantas/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente
9.
Planta ; 253(2): 46, 2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33484359

RESUMEN

MAIN CONCLUSION: This study identified a new bHLHm1 transcription factor MdSAT1 which functioned in mediating tolerance to salt and drought resistance. Changes in the expression of stress-related genes play crucial roles in response to environmental stress. Basic helix-loop-helix (bHLH) proteins are the largest superfamily of transcription factors and a large number of bHLH proteins function in plant responses to abiotic stresses. We identified a new bHLHm1 transcription factor from apple and named it MdSAT1. ß-Glucuronidase (GUS) staining showed that MdSAT1 expressed in various tissues with highly expressed in leaves. Promoter analysis revealed that MdSAT1 contained multiple response elements and its transcription was induced by several environmental cues, particularly salt and drought stresses. Overexpression of MdSAT1 in apple calli and Arabidopsis resulted in a phenotype of increased tolerance to salt and drought. Altering abscisic acid (ABA) treatment increased the sensitivity of MdSAT1-OE Arabidopsis to ABA, and heavy metal stress, osmotic stress, and ethylene did not participate in MdSAT1 mediated plant development. These findings reveal the abiotic stress functions of MdSAT1 and pave the way for further functional investigation.


Asunto(s)
Sequías , Malus , Proteínas de Plantas , Estrés Fisiológico , Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Salinidad , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Plant Biotechnol J ; 19(2): 285-299, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32757335

RESUMEN

Changes in carbohydrates and organic acids largely determine the palatability of edible tissues of horticulture crops. Elucidating the potential molecular mechanisms involved in the change in carbohydrates and organic acids, and their temporal and spatial crosstalk are key steps in understanding fruit developmental processes. Here, we used apple (Malus domestica Borkh.) as research materials and found that MdbHLH3, a basic helix-loop-helix transcription factor (bHLH TF), modulates the accumulation of malate and carbohydrates. Biochemical analyses demonstrated that MdbHLH3 directly binds to the promoter of MdcyMDH that encodes an apple cytosolic NAD-dependent malate dehydrogenase, activating its transcriptional expression, thereby promoting malate accumulation in apple fruits. Additionally, MdbHLH3 overexpression increased the photosynthetic capacity and carbohydrate levels in apple leaves and also enhanced the carbohydrate accumulation in fruits by adjusting carbohydrate allocation from sources to sinks. Overall, our findings provide new insights into the mechanism of how the bHLH TF MdbHLH3 modulates the fruit quality. It directly regulates the expression of cytosolic malate dehydrogenase MdcyMDH to coordinate carbohydrate allocation and malate accumulation in apple.


Asunto(s)
Malus , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Fructosa , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malatos , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
New Phytol ; 229(5): 2707-2729, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33119890

RESUMEN

The plant hormone jasmonic acid (JA) is involved in the cold stress response, and the inducer of CBF expression 1 (ICE1)- C-repeat binding factor (CBF) regulatory cascade plays a key role in the regulation of cold stress tolerance. In this study, we showed that a novel B-box (BBX) protein MdBBX37 positively regulates JA-mediated cold-stress resistance in apple. We found that MdBBX37 bound to the MdCBF1 and MdCBF4 promoters to activate their transcription, and also interacted with MdICE1 to enhance the transcriptional activity of MdICE1 on MdCBF1, thus promoting its cold tolerance. Two JA signaling repressors, MdJAZ1 and MdJAZ2 (JAZ, JAZMONATE ZIM-DOMAIN), interacted with MdBBX37 to repress the transcriptional activity of MdBBX37 on MdCBF1 and MdCBF4, and also interfered with the interaction between MdBBX37 and MdICE1, thus negatively regulating JA-mediated cold tolerance. E3 ligase MdMIEL1 (MIEL1, MYB30-Interacting E3 Ligase1) reduced MdBBX37-improved cold resistance by mediating ubiquitination and degradation of the MdBBX37 protein. The data reveal that MIEL1 and JAZ proteins co-regulate JA-mediated cold stress tolerance through the BBX37-ICE1-CBF module in apple. These results will aid further examination of the post-translational modification of BBX proteins and the regulatory mechanism of JA-mediated cold stress tolerance.


Asunto(s)
Respuesta al Choque por Frío , Malus , Proteínas de Plantas/genética , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/fisiología , Oxilipinas , Ubiquitinación
12.
New Phytol ; 229(4): 2206-2222, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33006771

RESUMEN

Post-translational modification of proteins mediated by SIZ1, a small ubiquitin-like modifier (SUMO) E3 ligase, regulates multiple biological processes in plants. However, its role in the regulation of lateral root formation remains unclear. Here, we demonstrate that the apple SUMO E3 ligase MdSIZ1 promotes lateral root formation. Using a yeast-two-hybrid (Y2H) system, the auxin response factor MdARF8 was screened out as a protein-protein interaction partner of the SUMO-conjugating E2 enzyme MdSCE1, indicating that MdARF8 may be a substrate for MdSIZ1. The interaction between MdARF8 and MdSCE1 was confirmed by pull-down, Y2H and Co-immunoprecipitation assays. MdSIZ1 enhanced the conjugating enzyme activity of MdSCE1 to form a MdSCE1-MdSIZ1-MdARF8 complex, thereby facilitating SUMO modification. We identified two arginine substitution mutations at K342 and K380 in MdARF8 that blocked MdSIZ1-mediated SUMOylation, indicating that K342 and K380 are the principal SUMOylation sites of the MdARF8 protein. Moreover, MdARF8 promoted lateral root formation in transgenic apple plants, and the phenotype of reduced lateral roots in the Arabidopsis siz1-2 mutant was restored in siz1-2/MdARF8 complementary plants. Our findings reveal an important role for sumoylation in the regulation of lateral root formation in plants.


Asunto(s)
Malus , Sumoilación , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Ubiquitina , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
13.
Plant Physiol ; 183(2): 750-764, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32241879

RESUMEN

Excessive application of nitrate, an essential macronutrient and a signal regulating diverse physiological processes, decreases malate accumulation in apple (Malus domestica) fruit, but the underlying mechanism remains poorly understood. Here, we show that an apple BTB/TAZ protein, MdBT2, is involved in regulating malate accumulation and vacuolar pH in response to nitrate. In vitro and in vivo assays indicate that MdBT2 interacts directly with and ubiquitinates a bHLH transcription factor, MdCIbHLH1, via the ubiquitin/26S proteasome pathway in response to nitrate. This ubiquitination results in the degradation of MdCIbHLH1 protein and reduces the transcription of MdCIbHLH1-targeted genes involved in malate accumulation and vacuolar acidification, including MdVHA-A, which encodes a vacuolar H+-ATPase, and MdVHP1, which encodes a vacuolar H+-pyrophosphatase, as well as MdALMT9, which encodes an aluminum-activated malate transporter. A series of transgenic analyses in apple materials including fruits, plantlets, and calli demonstrate that MdBT2 controls nitrate-mediated malate accumulation and vacuolar pH at least partially, if not completely, via regulating the MdCIbHLH1 protein level. Taken together, these findings reveal that MdBT2 regulates the stability of MdCIbHLH1 via ubiquitination in response to nitrate, which in succession transcriptionally reduces the expression of malate-associated genes, thereby controlling malate accumulation and vacuolar acidification in apples under high nitrate supply.


Asunto(s)
Malatos/metabolismo , Nitratos/farmacología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Pirofosfatasa Inorgánica/genética , Pirofosfatasa Inorgánica/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinación/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
14.
Plant Cell Environ ; 44(1): 216-233, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33051890

RESUMEN

Jasmonic acid (JA) is shown to induce leaf senescence. However, the underlying molecular mechanism is not well understood, especially in woody plants such as fruit trees. In this study, we are interested in exploring the biological role of MdBT2 in JA-mediated leaf senescence. We found that MdBT2 played an antagonistic role in MdMYC2-promoted leaf senescence. Our results revealed that MdBT2 interacted with MdMYC2 and accelerated its ubiquitination degradation, thus negatively regulated MdMYC2-promoted leaf senescence. In addition, MdBT2 acted as a stabilizing factor to improve the stability of MdJAZ2 through direct interaction, thereby inhibited JA-mediated leaf senescence. Furthermore, our results also showed that MdBT2 interacted with a subset of JAZ proteins in apple, including MdJAZ1, MdJAZ3, MdJAZ4 and MdJAZ8. Our investigations provide new insight into molecular mechanisms of JA-modulated leaf senescence. The dynamic JA-MdBT2-MdJAZ2-MdMYC2 regulatory module plays an important role in JA-modulated leaf senescence.


Asunto(s)
Ciclopentanos/metabolismo , Malus/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Envejecimiento , Arabidopsis , Clorofila/metabolismo , Inmunoprecipitación , Malus/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos , Ubiquitinación
15.
Plant Cell Environ ; 44(6): 1869-1884, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33459386

RESUMEN

Iron (Fe) is an essential element for plant growth, development and metabolism. Due to its lack of solubility and low bioavailability in soil, Fe levels are usually far below the optimum amount for most plants' growth and development. In apple production, excessive use of nitrogen fertilizer may cause iron chlorosis symptoms in the newly growing leaves, but the regulatory mechanisms underlying this phenomenon are unclear. In this study, low nitrate (NO3- , LN) application alleviated the symptoms of Fe deficiency and promoted lower rhizosphere pH, which was beneficial for root Fe acquisition. At the same time, LN treatment increased citrate and abscisic acid accumulation in roots, which promoted Fe transport from root to shoot and maintained Fe homeostasis. Moreover, qRT-PCR analysis showed that nitrate application caused differential expression of genes related to Fe uptake and transport, as well as transcriptional regulators. In summary, our data reveal that low nitrate alleviated Fe deficiency through multiple pathways, demonstrating a new option for minimizing Fe deficiency by regulating the balance between nutrients.


Asunto(s)
Hierro/metabolismo , Malus/metabolismo , Nitratos/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Ácido Cítrico/farmacología , Regulación de la Expresión Génica de las Plantas , Homeostasis , Concentración de Iones de Hidrógeno , Malus/efectos de los fármacos , Malus/genética , Nitratos/farmacología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Rizosfera
16.
J Exp Bot ; 72(4): 1460-1472, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33159793

RESUMEN

Abscisic acid (ABA) induces anthocyanin biosynthesis in many plant species. However, the molecular mechanism of ABA-regulated anthocyanin biosynthesis remains unclear. As a crucial regulator of ABA signaling, ABSCISIC ACID-INSENSITIVE5 (ABI5) is involved in many aspects of plant growth and development, yet its regulation of anthocyanin biosynthesis has not been elucidated. In this study, we found that MdABI5, the apple homolog of Arabidopsis ABI5, positively regulated ABA-induced anthocyanin biosynthesis. A series of biochemical tests showed that MdABI5 specifically interacts with basic helix-loop-helix 3 (MdbHLH3), a positive regulator of anthocyanin biosynthesis. MdABI5 enhanced the binding of MdbHLH3 to its target genes dihydroflavonol 4-reductase (MdDFR) and UDP flavonoid glucosyl transferase (MdUF3GT). In addition, MdABI5 directly bound to the promoter of MdbHLH3 to activate its expression. Moreover, MdABI5 enhanced ABA-promoted interaction between MdMYB1 and MdbHLH3. Finally, antisense suppression of MdbHLH3 significantly reduced anthocyanin biosynthesis promoted by MdABI5, indicating that MdABI5-promoted anthocyanin biosynthesis was dependent on MdbHLH3. Taken together, our data suggest that MdABI5 plays a positive role in ABA-induced anthocyanin biosynthesis by modulating the MdbHLH3-MdMYB1 complex. Our work broadens the regulatory network of ABA-mediated anthocyanin biosynthesis, providing new insights to further study the transcriptional regulatory mechanisms behind this process.


Asunto(s)
Antocianinas/biosíntesis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Malus , Proteínas de Plantas/metabolismo , Ácido Abscísico , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Regiones Promotoras Genéticas
17.
Plant Cell Rep ; 40(2): 405-419, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33331953

RESUMEN

KEY MESSAGE: The ankyrin repeat-containing protein MdANK2B was identified to contribute to increasing resistance to salt stress and decreasing sensitivity to ABA in Malus domestica. Ankyrin (ANK) repeat-containing proteins occur widely in prokaryotes, eukaryotes, and even in some viruses and play a critical role in plant growth and development, as well as the response to biotic and abiotic stress. However, the function of ANK repeat-containing proteins in apple (Malus domestica) has not yet been investigated. Here, we identified apple MdANK2B based on homology analysis with the Arabidopsis ANK repeat-containing proteins AtAKR2A and AtAKR2B. MdANK2B was found to be localized in the cytoplasm, and its encoding gene was highly expressed in both apple leaves and fruits. In addition, MdANK2B gene expression was highly induced by salt stresses and abscisic acid (ABA). Overexpression of MdANK2B increased resistance to salt stress and decreased sensitivity to ABA in both transgenic apple calli and seedlings. In addition, overexpression of MdANK2B reduced the accumulation of reactive oxygen species (ROS) by enhancing the activity of antioxidant enzymes in response to salt stress. Our data revealed the role of MdANK2B in response to salt stress and ABA treatment in apple, which widens the known functions of ANK repeat-containing proteins in response to abiotic stress.


Asunto(s)
Ácido Abscísico/farmacología , Repetición de Anquirina/genética , Proteínas de Arabidopsis/genética , Malus/genética , Chaperonas Moleculares/genética , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Expresión Génica , Malus/fisiología , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Estrés Salino , Tolerancia a la Sal/genética , Estrés Fisiológico
18.
Plant Cell Rep ; 40(7): 1127-1139, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33973072

RESUMEN

KEY MESSAGE: MdBZR1 directly binds to the promoter of MdABI5 and suppresses its expression to mediate ABA response. The plant hormones brassinosteroids (BRs) and abscisic acid (ABA) antagonistically regulate various aspects of plant growth and development. However, the association between BR and ABA signaling is less clear. Here, we identified MdBZR1 in apple (Malus domestica) and demonstrated that it was activated by BRs and could respond to ABA treatment. Overexpression of MdBZR1 in apple calli and Arabidopsis reduced ABA-hypersensitive phenotypes, suggesting that MdBZR1 negatively regulates ABA signaling. Subsequently, we found that MdBZR1 directly bound to the promoter region of MdABI5 and suppressed its expression. MdABI5 was significantly induced by ABA treatment. And overexpression of MdABI5 in apple calli increased sensitivity to ABA. Ectopic expression of MdABI5 in Arabidopsis inhibited seed germination and seedling growth. In addition, overexpression of MdBZR1 partially attenuated MdABI5-mediated ABA sensitivity. Taken together, our data indicate that MdBZR1 directly binds to the promoter of MdABI5 and suppresses its expression to antagonistically mediate ABA response. Our work contributes to the functional studies of BZR1 and further broadens the insight into the between BR and ABA signaling.


Asunto(s)
Ácido Abscísico/metabolismo , Malus/genética , Proteínas de Plantas/genética , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Malus/efectos de los fármacos , Malus/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Estrés Salino/genética
19.
Plant Cell Physiol ; 61(1): 130-143, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31550006

RESUMEN

As an important environment factor, light affects plant growth and development throughout life. B-BOX (BBX) proteins play key roles in the regulation of light signaling. Although the multiple roles of BBX proteins have been extensively studied in Arabidopsis, the research in apple is much less extensive. In this study, we systematically characterized the negative role of an apple BBX protein MdBBX37 in light signaling, including inhibiting anthocyanin biosynthesis and promoting hypocotyl elongation. We found that MdBBX37 interacted with MdMYB1 and MdMYB9, two key positive regulators of anthocyanin biosynthesis, and inhibited the binding of those two proteins to their target genes and, therefore, negatively regulated anthocyanin biosynthesis. In addition, MdBBX37 directly bound to the promoter of MdHY5, a positive regulator of light signaling, and suppressed its expression, and thus relieved MdHY5-mediated hypocotyl inhibition. Taken together, our investigations suggest that MdBBX37 is a negative regulator of light signaling in apple. Our study will provide reference for further study on the functions of BBX proteins in apple.


Asunto(s)
Antocianinas/biosíntesis , Genes de Plantas , Hipocótilo/metabolismo , Malus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras , Ritmo Circadiano , Regulación de la Expresión Génica de las Plantas , Luz , Malus/crecimiento & desarrollo , Malus/metabolismo , Morfogénesis/fisiología , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , Alineación de Secuencia , Factores de Transcripción/metabolismo
20.
Biochem Biophys Res Commun ; 533(4): 717-722, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-32981681

RESUMEN

Auxin plays an important role in plant growth and development; for example, it regulates the elongation and division of plant cells, the formation of plantlet's geotropism and phototropism, and the growth of main lateral roots and hypocotyl. IAA gene is associated with auxin and can response to biotic and abiotic stress in plants. However, the regulatory effect of auxin on anthocyanin accumulation has been rarely reported. In this study, we show that auxin inhibites the accumulation of anthocyanin and decreases the expression of genes related to anthocyanin synthesis in calli, leaves, and seedlings of apple. The expression levels of MdIAA family genes were determined, and we found that MdIAA26 significantly responded to auxin, which also induced MdIAA26 degradation. Functional analysis of MdIAA26 showed that overexpressing MdIAA26 in apple calli and Arabidopsis could promote the accumulation of anthocyanin and up-regulate the genes related to anthocyanin synthesis. Furthermore, the MdIAA26-overexpressing Arabidopsis could counteract auxin-induced inhibition on anthocyanin accumulation, which indicates that auxin inhibits the accumulation of anthocyanin in apple by degrading MdIAA26 protein.


Asunto(s)
Antocianinas/biosíntesis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Malus/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Antocianinas/análisis , Arabidopsis/metabolismo , Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Malus/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Plantones/metabolismo , Transducción de Señal/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA