Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Circ Res ; 134(10): 1306-1326, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38533639

RESUMEN

BACKGROUND: Ventricular arrhythmias (VAs) demonstrate a prominent day-night rhythm, commonly presenting in the morning. Transcriptional rhythms in cardiac ion channels accompany this phenomenon, but their role in the morning vulnerability to VAs and the underlying mechanisms are not understood. We investigated the recruitment of transcription factors that underpins transcriptional rhythms in ion channels and assessed whether this mechanism was pertinent to the heart's intrinsic diurnal susceptibility to VA. METHODS AND RESULTS: Assay for transposase-accessible chromatin with sequencing performed in mouse ventricular myocyte nuclei at the beginning of the animals' inactive (ZT0) and active (ZT12) periods revealed differentially accessible chromatin sites annotating to rhythmically transcribed ion channels and distinct transcription factor binding motifs in these regions. Notably, motif enrichment for the glucocorticoid receptor (GR; transcriptional effector of corticosteroid signaling) in open chromatin profiles at ZT12 was observed, in line with the well-recognized ZT12 peak in circulating corticosteroids. Molecular, electrophysiological, and in silico biophysically-detailed modeling approaches demonstrated GR-mediated transcriptional control of ion channels (including Scn5a underlying the cardiac Na+ current, Kcnh2 underlying the rapid delayed rectifier K+ current, and Gja1 responsible for electrical coupling) and their contribution to the day-night rhythm in the vulnerability to VA. Strikingly, both pharmacological block of GR and cardiomyocyte-specific genetic knockout of GR blunted or abolished ion channel expression rhythms and abolished the ZT12 susceptibility to pacing-induced VA in isolated hearts. CONCLUSIONS: Our study registers a day-night rhythm in chromatin accessibility that accompanies diurnal cycles in ventricular myocytes. Our approaches directly implicate the cardiac GR in the myocyte excitability rhythm and mechanistically link the ZT12 surge in glucocorticoids to intrinsic VA propensity at this time.


Asunto(s)
Ritmo Circadiano , Miocitos Cardíacos , Receptores de Glucocorticoides , Animales , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Ratones , Miocitos Cardíacos/metabolismo , Masculino , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/genética , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Conexina 43/metabolismo , Conexina 43/genética , Ratones Noqueados , Potenciales de Acción
2.
Physiol Rev ; 98(4): 2381-2430, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30156493

RESUMEN

Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon.


Asunto(s)
Hormonas/metabolismo , Proopiomelanocortina/metabolismo , Animales , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo
3.
Int J Obes (Lond) ; 42(8): 1431-1444, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29777232

RESUMEN

BACKGROUND AND OBJECTIVE: Maternal overnutrition has been implicated in affecting the offspring by programming metabolic disorders such as obesity and diabetes, by mechanisms that are not clearly understood. This study aimed to determine the long-term impact of maternal high-fat (HF) diet feeding on epigenetic changes in the offspring's hypothalamic Pomc gene, coding a key factor in the control of energy balance. Further, it aimed to study the additional effects of postnatal overnutrition on epigenetic programming by maternal nutrition. METHODS: Eight-week-old female Sprague-Dawley rats were fed HF diet or low-fat (LF) diet for 6 weeks before mating, and throughout gestation and lactation. At postnatal day 21, samples were collected from a third offspring and the remainder were weaned onto LF diet for 5 weeks, after which they were either fed LF or HF diet for 12 weeks, resulting in four groups of offspring differing by their maternal and postweaning diet. RESULTS: With maternal HF diet, offspring at weaning had rapid early weight gain, increased adiposity, and hyperleptinemia. The programmed adult offspring, subsequently fed LF diet, retained the increased body weight. Maternal HF diet combined with offspring HF diet caused more pronounced hyperphagia, fat mass, and insulin resistance. The ARC Pomc gene from programmed offspring at weaning showed hypermethylation in the enhancer (nPE1 and nPE2) regions and in the promoter sequence mediating leptin effects. Interestingly, hypermethylation at the Pomc promoter but not at the enhancer region persisted long term into adulthood in the programmed offspring. However, there were no additive effects on methylation levels in the regulatory regions of Pomc in programmed offspring fed a HF diet. CONCLUSION: Maternal overnutrition programs long-term epigenetic alterations in the offspring's hypothalamic Pomc promoter. This predisposes the offspring to metabolic disorders later in life.


Asunto(s)
Epigénesis Genética/genética , Hipotálamo/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos/genética , Hipernutrición/genética , Efectos Tardíos de la Exposición Prenatal/genética , Proopiomelanocortina/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Metilación de ADN , Modelos Animales de Enfermedad , Femenino , Hipotálamo/química , Obesidad/genética , Obesidad/metabolismo , Hipernutrición/metabolismo , Hipernutrición/fisiopatología , Embarazo , Proopiomelanocortina/metabolismo , Ratas , Ratas Sprague-Dawley
4.
Curr Biol ; 32(21): 4699-4706.e4, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36182699

RESUMEN

Loss of appetite and negative energy balance are common features of endotoxemia in all animals and are thought to have protective roles by reducing nutrient availability to host and pathogen metabolism. Accordingly, fasting and caloric restriction have well-established anti-inflammatory properties. However, in response to reduced nutrient availability at the cellular and organ levels, negative energy balance also recruits distinct energy-sensing brain circuits, but it is not known whether these neuronal systems have a role in its anti-inflammatory effects. Here, we report that hypothalamic AgRP neurons-a critical neuronal population for the central representation of negative energy balance-have parallel immunoregulatory functions. We found that when endotoxemia occurs in fasted mice, the activity of AgRP neurons remains sustained, but this activity does not influence feeding behavior and endotoxemic anorexia. Furthermore, we found that endotoxemia acutely desensitizes AgRP neurons, which also become refractory to inhibitory signals. Mimicking this sustained AgRP neuron activity in fed mice by chemogenetic activation-a manipulation known to recapitulate core behavioral features of fasting-results in reduced acute tumor necrosis factor alpha (TNF-α) release during endotoxemia. Mechanistically, we found that endogenous glucocorticoids play an important role: glucocorticoid receptor deletion from AgRP neurons prevents their endotoxemia-induced desensitization, and importantly, it counteracts the fasting-induced suppression of TNF-α release, resulting in prolonged sickness. Together, these findings provide evidence directly linking AgRP neuron activity to the acute response during endotoxemia, suggesting that these neurons are a functional component of the immunoregulatory effects associated with negative energy balance and catabolic metabolism.


Asunto(s)
Endotoxemia , Factor de Necrosis Tumoral alfa , Ratones , Animales , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Factor de Necrosis Tumoral alfa/genética , Endotoxemia/metabolismo , Endotoxemia/patología , Hipotálamo/metabolismo , Neuronas/fisiología , Metabolismo Energético
5.
Sci Rep ; 11(1): 13776, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215821

RESUMEN

Glucocorticoids (GCs) are widely prescribed anti-inflammatory medicines, but their use can lead to metabolic side-effects. These may occur through direct actions of GCs on peripheral organs, but could also be mediated by the hypothalamic AgRP neurons, which can increase food intake and modify peripheral metabolism. Therefore, the aim of this study was to examine the metabolic effects of chronic treatment with the GC corticosterone (Cort, 75 µg/ml in drinking water) in mice lacking the glucocorticoid receptor (GR) on AgRP neurons. Female AgRP-GR KO mice had delayed onset of Cort-induced hyperphagia. However, AgRP-GR KO had little impact on the increased body weight or adiposity seen with 3 weeks Cort treatment. Cort caused hepatic steatosis in control mice, but in Cort treated female AgRP-GR KO mice there was a 25% reduction in liver lipid content and lower plasma triglycerides. Additionally, Cort treatment led to hyperinsulinaemia, but compared to controls, Cort-treated AgRP-GR KO mice had both lower fasting insulin levels and lower insulin levels during a glucose tolerance test. In conclusion, these data indicate that GCs do act through AgRP neurons to contribute, at least in part, to the adverse metabolic consequences of chronic GC treatment.


Asunto(s)
Proteína Relacionada con Agouti/genética , Glucocorticoides/efectos adversos , Inflamación/tratamiento farmacológico , Receptores de Glucocorticoides/genética , Animales , Corticosterona/efectos adversos , Corticosterona/farmacología , Modelos Animales de Enfermedad , Glucocorticoides/farmacología , Humanos , Hiperinsulinismo/inducido químicamente , Hipotálamo/efectos de los fármacos , Hipotálamo/patología , Inflamación/complicaciones , Inflamación/patología , Lípidos/genética , Hígado/efectos de los fármacos , Hígado/patología , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología
6.
Endocrinology ; 160(5): 964-978, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30794724

RESUMEN

Glucocorticoids are potent and widely used medicines but often cause metabolic side effects. A murine model of corticosterone treatment resulted in increased hypothalamic expression of the melanocortin antagonist AgRP in parallel with obesity and hyperglycemia. We investigated how these adverse effects develop over time, with particular emphasis on hypothalamic involvement. Wild-type and Agrp-/- male mice were treated with corticosterone for 3 weeks. Phenotypic, biochemical, protein, and mRNA analyses were undertaken on central and peripheral tissues, including white and brown adipose tissue, liver, and muscle, to determine the metabolic consequences. Corticosterone treatment induced hyperphagia within 1 day in wild-type mice, which persisted for 3 weeks. Despite this early increase in food intake, the body weight only started to increase after 10 days. Hyperinsulinemia occurred at day 1. Also, although after 2 days, alterations were present in the genes often associated with insulin resistance in several peripheral tissues, hyperglycemia only developed at 3 weeks. Throughout, sustained elevation in hypothalamic Agrp expression was present. Mice with Agrp deleted [using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, Agrp-/-] were partially protected against corticosterone-induced hyperphagia. However, Agrp-/- mice still had corticosterone-induced increases in body weight and adiposity similar to those of the Agrp+/+ mice. Loss of Agrp did not diminish corticosterone-induced hyperinsulinemia or correct changes in hepatic gluconeogenic genes. Chronic glucocorticoid treatment in mice mimics many of the metabolic side effects seen in patients and leads to a robust increase in Agrp. However, AgRP does not appear to be responsible for most of the glucocorticoid-induced adverse metabolic effects.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Proteína Relacionada con Agouti/metabolismo , Glucocorticoides/farmacología , Hipotálamo/efectos de los fármacos , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Proteína Relacionada con Agouti/genética , Animales , Peso Corporal/efectos de los fármacos , Corticosterona/administración & dosificación , Corticosterona/farmacología , Ingestión de Alimentos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glucocorticoides/administración & dosificación , Hipotálamo/metabolismo , Leptina/sangre , Leptina/genética , Leptina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Ratones Transgénicos , Obesidad/genética
7.
Mol Metab ; 26: 5-17, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31176677

RESUMEN

OBJECTIVE: Glucocorticoids (GCs) are widely prescribed medications that are well recognized to cause adverse metabolic effects including hyperphagia, obesity, and hyperglycemia. These effects have been recapitulated in a murine model of GC excess, and we hypothesize that they are mediated, in part, through central mechanisms. This study aimed to identify genes in the hypothalamic arcuate nucleus (ARC) that are altered with GC treatment and evaluate their contribution to GC-induced metabolic abnormalities. METHODS: Corticosterone (Cort; 75 µg/ml) was administered in the drinking water to male C57Bl/6J mice for 2 days or 4 weeks. Phenotypic analysis of each group was undertaken and central and peripheral tissues were collected for biochemical and mRNA analyses. Arcuate nuclei were isolated by laser capture microdissection and tissue analyzed by RNA-seq. RESULTS: RNA-seq analysis of ARC tissue from 4 week Cort treated mice revealed 21 upregulated and 22 downregulated genes at a time when mice had increased food intake, expansion of adipose tissue mass, and insulin resistance. In comparison, after 2 days Cort treatment, when the main phenotypic change was increased food intake, RNA-seq identified 30 upregulated and 16 downregulated genes. Within the genes altered at 2 days were a range of novel genes but also those known to be regulated by GCs, including Fkbp5, Mt2, Fam107a, as well as some involved in the control of energy balance, such as Agrp, Sepp1, Dio2, and Nmb. Of the candidate genes identified by RNA-seq, type-II iodothyronine deiodinase (Dio2) was chosen for further investigation as it was increased (2-fold) with Cort, and has been implicated in the control of energy balance via the modulation of hypothalamic thyroid hormone availability. Targeted knockdown of Dio2 in the MBH using AAV-mediated CRISPR-Cas9 produced a mild attenuation in GC-induced brown adipose tissue weight gain, as well as a 56% reduction in the GC-induced increase in Agrp. However, this conferred no protection from GC-induced hyperphagia, obesity, or hyperglycemia. CONCLUSIONS: This study identified a comprehensive set of genes altered by GCs in the ARC and enabled the selection of key candidate genes. Targeted knockdown of hypothalamic Dio2 revealed that it did not mediate the chronic GC effects on hyperphagia and hyperglycemia.


Asunto(s)
Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Glucocorticoides/farmacología , Transcriptoma/efectos de los fármacos , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Yoduro Peroxidasa/antagonistas & inhibidores , Yoduro Peroxidasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Yodotironina Deyodinasa Tipo II
8.
Cell Calcium ; 44(2): 210-9, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18221783

RESUMEN

In this study, the presence of GPRC6A receptors in rat mesenteric artery was investigated. In artery homogenates, GPRC6A mRNA was detected and Western blotting showed the presence of GPRC6A protein. Immunohistochemical studies revealed GPRC6A in both endothelial cells and myocytes. In whole vessel segments, the GPRC6A activators, 300 microM l-ornithine and 100 microM Al(3+), induced endothelium-dependent myocyte hyperpolarizations sensitive to 10 microM TRAM-34, a blocker of intermediate conductance, Ca(2+)-sensitive K(+) channels (IK(Ca)). Activation of IK(Ca) with calindol (300 nM; a positive allosteric Ca(2+)-sensing receptor - CaR - modulator) was inhibited by 500 nM ouabain (inhibition of rat type 2 and type 3 Na(+)/K(+)-ATPases) but unaffected by 30 microM Ba(2+) (blockade of inwardly rectifying K(+) channels). Neither l-ornithine nor Al(3+) activated CaRs heterologously expressed in CHO or HEK293 cells. In the presence of 300 microM l-ornithine or 100 microM Al(3+), myocyte hyperpolarizations to calindol were potentiated whereas this potentiation and hyperpolarizations to l-ornithine were lost following incubation with an anti-GPRC6A antibody. It is concluded that GPRC6A receptors are present on mesenteric artery endothelial cells and myocytes and that their activation selectively opens IK(Ca) channels. This triggers a ouabain-sensitive myocyte hyperpolarization suggesting a close functional relationship between GPRC6A, the IK(Ca) channel and type 2 and/or type 3 Na(+)/K(+)-ATPases.


Asunto(s)
Calcio/metabolismo , Vasos Coronarios/metabolismo , Endotelio Vascular/metabolismo , Arterias Mesentéricas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Western Blotting , Células CHO , Cardiotónicos/farmacología , Células Cultivadas , Vasos Coronarios/citología , Vasos Coronarios/efectos de los fármacos , Cricetinae , Cricetulus , Electrofisiología , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Humanos , Indoles/farmacología , Inositol/metabolismo , Riñón/citología , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Arterias Mesentéricas/citología , Arterias Mesentéricas/efectos de los fármacos , Células Musculares/citología , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Naftalenos/farmacología , Ornitina/farmacología , Ouabaína/farmacología , Fosforilación/efectos de los fármacos , Canales de Potasio Calcio-Activados/metabolismo , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Porcinos
9.
Endocrinology ; 157(11): 4257-4265, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27649090

RESUMEN

Glucocorticoid (Gc) excess, from endogenous overproduction in disorders of the hypothalamic-pituitary-adrenal axis or exogenous medical therapy, is recognized to cause adverse metabolic side effects. The Gc receptor (GR) is widely expressed throughout the body, including brain regions such as the hypothalamus. However, the extent to which chronic Gcs affect Gc concentrations in the hypothalamus and impact on GR and target genes is unknown. To investigate this, we used a murine model of corticosterone (Cort)-induced obesity and analyzed Cort levels in the hypothalamus and expression of genes relevant to Gc action. Mice were administered Cort (75 µg/mL) or ethanol (1%, vehicle) in drinking water for 4 weeks. Cort-treated mice had increased body weight, food intake, and adiposity. As expected, Cort increased plasma Cort levels at both zeitgeber time 1 and zeitgeber time 13, ablating the diurnal rhythm. Liquid chromatography dual tandem mass spectrometry revealed a 4-fold increase in hypothalamic Cort, which correlated with circulating levels and concentrations of Cort in other brain regions. This occurred despite decreased 11ß-hydroxysteroid dehydrogenase (Hsd11b1) expression, the gene encoding the enzyme that regenerates active Gcs, whereas efflux transporter Abcb1 mRNA was unaltered. In addition, although Cort decreased hypothalamic GR (Nr3c1) expression 2-fold, the Gc-induced leucine zipper (Tsc22d3) mRNA increased, which indicated elevated GR activation. In keeping with the development of hyperphagia and obesity, Cort increased Agrp, but there were no changes in Pomc, Npy, or Cart mRNA in the hypothalamus. In summary, chronic Cort treatment causes chronic increases in hypothalamic Cort levels and a persistent elevation in Agrp, a mediator in the development of metabolic disturbances.


Asunto(s)
Glucocorticoides/metabolismo , Hiperfagia/etiología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Obesidad/etiología , Animales , Peso Corporal/efectos de los fármacos , Cromatografía Liquida , Ingestión de Alimentos/efectos de los fármacos , Glucocorticoides/sangre , Glucocorticoides/farmacología , Hiperfagia/sangre , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/sangre , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masas en Tándem , Factores de Tiempo
10.
Eur J Cell Biol ; 84(11): 867-83, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16323284

RESUMEN

The inability of insulin to stimulate glucose metabolism in skeletal muscle fibres is a classic characteristic of type 2 diabetes. Using the non-obese Goto-Kakizaki rat as an established animal model of this type of diabetes, sucrose gradient centrifugation studies were performed and confirmed the abnormal subcellular location of the glucose transporter GLUT4. In addition, this analysis revealed an unexpected drastic reduction in the surface membrane marker beta-dystroglycan, a dystrophin-associated glycoprotein. Based on this finding, a comprehensive immunoblotting survey was conducted which showed a dramatic decrease in the Dp427 isoform of dystrophin and the alpha/beta-dystroglycan subcomplex, but not in laminin, sarcoglycans, dystrobrevin, and excitation-contraction-relaxation cycle elements. Thus, the backbone of the trans-sarcolemmal linkage between the extracellular matrix and the actin membrane cytoskeleton might be structurally impaired in diabetic fibres. Immunohistochemical studies revealed that the reduction in the dystrophin-dystroglycan complex does not induce obvious signs of muscle pathology, and is neither universal in all fibres, nor fibre-type specific. Most importantly, the expression of alpha-syntrophin and the syntrophin-associated neuronal isoform of nitric oxide synthase, nNOS, was demonstrated to be severely reduced in diabetic fibres. The loss of the dystrophin-dystroglycan complex and the syntrophin-nNOS complex in selected fibres suggests a weakening of the sarcolemma, abnormal signalling and probably a decreased cytoprotective mechanism in diabetes. Impaired anchoring of the cortical actin cytoskeleton via dystrophin might interfere with the proper recruitment of the glucose transporter to the surface membrane, following stimulation by insulin or muscle contraction. This may, at least partially, be responsible for the insulin resistance in diabetic skeletal muscles.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Distroglicanos/metabolismo , Proteínas Asociadas a la Distrofina/metabolismo , Distrofina/metabolismo , Óxido Nítrico Sintasa/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Transportador de Glucosa de Tipo 4/metabolismo , Resistencia a la Insulina , Músculo Esquelético/metabolismo , Ratas , Sarcolema/metabolismo
11.
Front Neurosci ; 9: 126, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25954145

RESUMEN

The prevalence of obesity in adults and children has increased globally at an alarming rate. Mounting evidence from both epidemiological studies and animal models indicates that adult obesity and associated metabolic disorders can be programmed by intrauterine and early postnatal environment- a phenomenon known as "fetal programming of adult disease." Data from nutritional intervention studies in animals including maternal under- and over-nutrition support the developmental origins of obesity and metabolic syndrome. The hypothalamic neuronal circuits located in the arcuate nucleus controlling appetite and energy expenditure are set early in life and are perturbed by maternal nutritional insults. In this review, we focus on the effects of maternal nutrition in programming permanent changes in these hypothalamic circuits, with experimental evidence from animal models of maternal under- and over-nutrition. We discuss the epigenetic modifications which regulate hypothalamic gene expression as potential molecular mechanisms linking maternal diet during pregnancy to the offspring's risk of obesity at a later age. Understanding these mechanisms in key metabolic genes may provide insights into the development of preventative intervention strategies.

12.
Cell Metab ; 18(1): 21-8, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23823475

RESUMEN

Nestin-Cre mice have a significant metabolic phenotype that is hard to discern from current literature. Indeed, the Cre-lox system has numerous problems that can affect physiological parameters, and these are missed when the correct control strains are not used. Despite the increasing use of the Cre-lox system, these issues were not visible to the scientific community previously and may have affected published work. This makes it important to highlight the issues and raise awareness of the pitfalls of the Cre-lox system. Therefore, this perspective will discuss the impact of CNS and peripheral "off-target" Cre recombination on metabolic systems and describe the development of new approaches to obviate the difficulties.


Asunto(s)
Sistema Nervioso Central/metabolismo , ADN Nucleotidiltransferasas/genética , Integrasas/genética , Recombinación Genética/genética , Animales , ADN Nucleotidiltransferasas/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Marcación de Gen , Integrasas/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Animales , Nestina/genética , Nestina/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Proteína-Lisina 6-Oxidasa/metabolismo
13.
Endocrinology ; 154(10): 3599-609, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23832962

RESUMEN

Metabolic syndrome is growing in importance with the rising levels of obesity, type 2 diabetes, and insulin resistance. Metabolic syndrome shares many characteristics with Cushing's syndrome, which has led to investigation of the link between excess glucocorticoids and metabolic syndrome. Indeed, increased glucocorticoids from intracellular regeneration by 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) drives insulin resistance and increases adiposity, but these metabolic changes are assumed to be due to increased circulating glucocorticoids. We hypothesized that increasing the substrate for 11ß-HSD1 (11-dehydrocorticosterone, 11-DHC) would adversely affect metabolic parameters. We found that chronic administration of 11-DHC to male C57BL/6J mice resulted in increased circulating glucocorticoids, and down-regulation of the hypothalamic-pituitary-adrenal axis. This elevated 11ß-HSD1-derived corticosterone led to increased body weight gain and adiposity and produced marked insulin resistance. Surprisingly liver-specific 11ß-HSD1 knockout (LKO) mice given 11-DHC did not show any of the adverse metabolic effects seen in wild-type mice. This occurred despite the 11-DHC administration resulting in elevated circulating corticosterone, presumably from adipose tissue. Mice with global deletion of 11ß-HSD1 (global knockout) were unaffected by treatment with 11-DHC, having no increase in circulating corticosterone and exhibiting no signs of metabolic impairment. Taken together, these data show that in the absence of 11ß-HSD1 in the liver, mice are protected from the metabolic effects of 11-DHC administration, even though circulating glucocorticoids are increased. This implies that liver-derived intratissue glucocorticoids, rather than circulating glucocorticoids, contribute significantly to the development of metabolic syndrome and suggest that local action within hepatic tissue mediates these effects.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Corticosterona/análogos & derivados , Glucocorticoides/metabolismo , Hígado/enzimología , Síndrome Metabólico/etiología , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Adiposidad , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Corticosterona/administración & dosificación , Corticosterona/efectos adversos , Corticosterona/sangre , Corticosterona/metabolismo , Regulación hacia Abajo , Glucocorticoides/administración & dosificación , Glucocorticoides/efectos adversos , Glucocorticoides/sangre , Hiperinsulinismo/etiología , Hiperfagia/etiología , Hiperfagia/fisiopatología , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiopatología , Resistencia a la Insulina , Hígado/metabolismo , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/metabolismo , Síndrome Metabólico/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/fisiopatología , Aumento de Peso
14.
Endocrinology ; 154(12): 4580-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24169553

RESUMEN

The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) is a target for novel type 2 diabetes and obesity therapies based on the premise that lowering of tissue glucocorticoids will have positive effects on body weight, glycemic control, and insulin sensitivity. An 11ß-HSD1 inhibitor (compound C) inhibited liver 11ß-HSD1 by >90% but led to only small improvements in metabolic parameters in high-fat diet (HFD)-fed male C57BL/6J mice. A 4-fold higher concentration produced similar enzyme inhibition but, in addition, reduced body weight (17%), food intake (28%), and glucose (22%). We hypothesized that at the higher doses compound C might be accessing the brain. However, when we developed male brain-specific 11ß-HSD1 knockout mice and fed them the HFD, they had body weight and fat pad mass and glucose and insulin responses similar to those of HFD-fed Nestin-Cre controls. We then found that administration of compound C to male global 11ß-HSD1 knockout mice elicited improvements in metabolic parameters, suggesting "off-target" mechanisms. Based on the patent literature, we synthesized another 11ß-HSD1 inhibitor (MK-0916) from a different chemical series and showed that it too had similar off-target body weight and food intake effects at high doses. In summary, a significant component of the beneficial metabolic effects of these 11ß-HSD1 inhibitors occurs via 11ß-HSD1-independent pathways, and only limited efficacy is achievable from selective 11ß-HSD1 inhibition. These data challenge the concept that inhibition of 11ß-HSD1 is likely to produce a "step-change" treatment for diabetes and/or obesity.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/antagonistas & inhibidores , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Metabolismo Energético/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hipoglucemiantes/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Triazoles/farmacología , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Tejido Adiposo/metabolismo , Animales , Glucemia , Peso Corporal , Encéfalo/metabolismo , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/efectos adversos , Relación Dosis-Respuesta a Droga , Femenino , Genotipo , Glucosa/metabolismo , Hipoglucemiantes/química , Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Estructura Molecular , Pirazoles/química , Pirimidinas/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Triazoles/química
15.
Trends Endocrinol Metab ; 21(10): 619-27, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20594868

RESUMEN

Inhibitors of 11ß-HSD1 are in clinical trials for the treatment of type 2 diabetes. These compounds act by decreasing the cortisol generated in liver and adipose tissue, and therefore reducing tissue-specific gluconeogenesis and fatty acid metabolism. However, there is concern that reduction in tissue-regenerated cortisol might decrease feedback to the hypothalamic-pituitary-adrenal (HPA) axis, resulting in upregulation of cortisol from the adrenal gland. This review considers evidence from 11ß-HSD1 knockout and transgenic mice, inhibitor studies and results from clinical trials evaluating HPA axis biomarkers. It is clear that analysis of the HPA axis is not sufficiently detailed, and there is a need to understand the subtle changes in the axis associated with pulsatility, diurnal rhythm and stress.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Aminopiridinas/farmacología , Hipoglucemiantes/farmacología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sulfonamidas/farmacología , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/antagonistas & inhibidores , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Aminopiridinas/efectos adversos , Aminopiridinas/uso terapéutico , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Hidrocortisona/metabolismo , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/uso terapéutico , Sistema Hipotálamo-Hipofisario/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Sistema Hipófiso-Suprarrenal/metabolismo , Sulfonamidas/efectos adversos , Sulfonamidas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA