Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 619(7968): 143-150, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37380764

RESUMEN

Caloric restriction that promotes weight loss is an effective strategy for treating non-alcoholic fatty liver disease and improving insulin sensitivity in people with type 2 diabetes1. Despite its effectiveness, in most individuals, weight loss is usually not maintained partly due to physiological adaptations that suppress energy expenditure, a process known as adaptive thermogenesis, the mechanistic underpinnings of which are unclear2,3. Treatment of rodents fed a high-fat diet with recombinant growth differentiating factor 15 (GDF15) reduces obesity and improves glycaemic control through glial-cell-derived neurotrophic factor family receptor α-like (GFRAL)-dependent suppression of food intake4-7. Here we find that, in addition to suppressing appetite, GDF15 counteracts compensatory reductions in energy expenditure, eliciting greater weight loss and reductions in non-alcoholic fatty liver disease (NAFLD) compared to caloric restriction alone. This effect of GDF15 to maintain energy expenditure during calorie restriction requires a GFRAL-ß-adrenergic-dependent signalling axis that increases fatty acid oxidation and calcium futile cycling in the skeletal muscle of mice. These data indicate that therapeutic targeting of the GDF15-GFRAL pathway may be useful for maintaining energy expenditure in skeletal muscle during caloric restriction.


Asunto(s)
Metabolismo Energético , Factor 15 de Diferenciación de Crecimiento , Músculo Esquelético , Pérdida de Peso , Animales , Humanos , Ratones , Depresores del Apetito/metabolismo , Depresores del Apetito/farmacología , Depresores del Apetito/uso terapéutico , Restricción Calórica , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Factor 15 de Diferenciación de Crecimiento/metabolismo , Factor 15 de Diferenciación de Crecimiento/farmacología , Factor 15 de Diferenciación de Crecimiento/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Receptores Adrenérgicos beta/metabolismo , Pérdida de Peso/efectos de los fármacos
2.
J Biol Chem ; 300(2): 105626, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211818

RESUMEN

Mitochondrial electron transport chain complexes organize into supramolecular structures called respiratory supercomplexes (SCs). The role of respiratory SCs remains largely unconfirmed despite evidence supporting their necessity for mitochondrial respiratory function. The mechanisms underlying the formation of the I1III2IV1 "respirasome" SC are also not fully understood, further limiting insights into these processes in physiology and diseases, including neurodegeneration and metabolic syndromes. NDUFB4 is a complex I accessory subunit that contains residues that interact with the subunit UQCRC1 from complex III, suggesting that NDUFB4 is integral for I1III2IV1 respirasome integrity. Here, we introduced specific point mutations to Asn24 (N24) and Arg30 (R30) residues on NDUFB4 to decipher the role of I1III2-containing respiratory SCs in cellular metabolism while minimizing the functional consequences to complex I assembly. Our results demonstrate that NDUFB4 point mutations N24A and R30A impair I1III2IV1 respirasome assembly and reduce mitochondrial respiratory flux. Steady-state metabolomics also revealed a global decrease in citric acid cycle metabolites, affecting NADH-generating substrates. Taken together, our findings highlight an integral role of NDUFB4 in respirasome assembly and demonstrate the functional significance of SCs in regulating mammalian cell bioenergetics.


Asunto(s)
Complejo I de Transporte de Electrón , Mitocondrias , Transporte de Electrón , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Metabolismo Energético , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Humanos , Células HEK293
3.
Am J Physiol Endocrinol Metab ; 325(2): E107-E112, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37315156

RESUMEN

A person's metabolic rate corresponds to the whole body level sum of all oxidative reactions occurring on the cellular level. The energy expenditure (EE) can be categorized into various obligatory and facultative processes. In sedentary adults, basal metabolic rate is the largest contributor to total daily EE, and interindividual variability can be significant. Additional EE is required for digesting and metabolizing food, thermoregulatory adaptation to cold, and to support exercise and nonexercise body movements. Interindividual variability also exists for these EE processes, even after controlling for known factors. The complex mechanisms of interindividual variability in EE can have genetic and environmental origins and require further investigation. Exploration of interindividual variability in EE and its underlying factors holds importance to metabolic health, as it may predict disease risk, and be useful in the personalization of preventative and treatment strategies.


Asunto(s)
Metabolismo Basal , Metabolismo Energético , Adulto , Humanos , Ejercicio Físico , Regulación de la Temperatura Corporal , Adaptación Fisiológica
4.
Am J Physiol Endocrinol Metab ; 325(4): E291-E302, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584609

RESUMEN

Insulin resistance and blunted mitochondrial capacity in skeletal muscle are often synonymous, however, this association remains controversial. The aim of this study was to perform an in-depth multifactorial comparison of skeletal muscle mitochondrial capacity between individuals who were lean and active (Active, n = 9), individuals with obesity (Obese, n = 9), and individuals with obesity, insulin resistance, and type 2 diabetes (T2D, n = 22). Mitochondrial capacity was assessed by ex vivo mitochondrial respiration with fatty-acid and glycolytic-supported protocols adjusted for mitochondrial content (mtDNA and citrate synthase activity). Supercomplex assembly was measured by Blue Native (BN)-PAGE and immunoblot. Tricarboxylic (TCA) cycle intermediates were assessed with targeted metabolomics. Exploratory transcriptomics and DNA methylation analyses were performed to uncover molecular differences affecting mitochondrial function among the three groups. We reveal no discernable differences in skeletal muscle mitochondrial content, mitochondrial capacity, supercomplex assembly, TCA cycle intermediates, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (body mass index, age, and aerobic capacity). We highlight that lean, active individuals have greater mitochondrial content, mitochondrial capacity, supercomplex assembly, and TCA cycle intermediates. These phenotypical changes are reflected at the level of DNA methylation and gene transcription. The collective observation of comparable muscle mitochondrial capacity in individuals with obesity and T2D (vs. individuals without T2D) underscores a dissociation from skeletal muscle insulin resistance. Clinical trial number: NCT01911104.NEW & NOTEWORTHY Whether impaired mitochondrial capacity contributes to skeletal muscle insulin resistance is debated. Our multifactorial analysis shows no differences in skeletal muscle mitochondrial content, mitochondrial capacity, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (BMI, age, aerobic capacity). We highlight that lean, active individuals have enhanced skeletal muscle mitochondrial capacity that is also reflected at the level of DNA methylation and gene transcription.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Mitocondrias , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Mitocondrias Musculares/metabolismo
5.
PLoS Genet ; 16(11): e1009220, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33253187

RESUMEN

Cellular metabolism is tightly regulated by many signaling pathways and processes, including lysine acetylation of proteins. While lysine acetylation of metabolic enzymes can directly influence enzyme activity, there is growing evidence that lysine acetylation can also impact protein localization. As the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 has been implicated in a variety of metabolic processes, we have explored whether NuA4 controls the localization and/or protein levels of metabolic proteins. We performed a high-throughput microscopy screen of over 360 GFP-tagged metabolic proteins and identified 23 proteins whose localization and/or abundance changed upon deletion of the NuA4 scaffolding subunit, EAF1. Within this, three proteins were required for glycogen synthesis and 14 proteins were associated with the mitochondria. We determined that in eaf1Δ cells the transcription of glycogen biosynthesis genes is upregulated resulting in increased proteins and glycogen production. Further, in the absence of EAF1, mitochondria are highly fused, increasing in volume approximately 3-fold, and are chaotically distributed but remain functional. Both the increased glycogen synthesis and mitochondrial elongation in eaf1Δ cells are dependent on Bcy1, the yeast regulatory subunit of PKA. Surprisingly, in the absence of EAF1, Bcy1 localization changes from being nuclear to cytoplasmic and PKA activity is altered. We found that NuA4-dependent localization of Bcy1 is dependent on a lysine residue at position 313 of Bcy1. However, the glycogen accumulation and mitochondrial elongation phenotypes of eaf1Δ, while dependent on Bcy1, were not fully dependent on Bcy1-K313 acetylation state and subcellular localization of Bcy1. As NuA4 is highly conserved with the human Tip60 complex, our work may inform human disease biology, revealing new avenues to investigate the role of Tip60 in metabolic diseases.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilación , Glucógeno/biosíntesis , Histona Acetiltransferasas/genética , Lisina/metabolismo , Dinámicas Mitocondriales/genética , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
6.
Clin Sci (Lond) ; 136(14): 1081-1110, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35892309

RESUMEN

Metabolic demands of skeletal muscle are substantial and are characterized normally as highly flexible and with a large dynamic range. Skeletal muscle composition (e.g., fiber type and mitochondrial content) and metabolism (e.g., capacity to switch between fatty acid and glucose substrates) are altered in obesity, with some changes proceeding and some following the development of the disease. Nonetheless, there are marked interindividual differences in skeletal muscle composition and metabolism in obesity, some of which have been associated with obesity risk and weight loss capacity. In this review, we discuss related molecular mechanisms and how current and novel treatment strategies may enhance weight loss capacity, particularly in diet-resistant obesity.


Asunto(s)
Músculo Esquelético , Obesidad , Ácidos Grasos/metabolismo , Humanos , Mitocondrias/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Pérdida de Peso/fisiología
7.
FASEB J ; 35(5): e21544, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33819356

RESUMEN

Serine-rich splicing factor 3 (SRSF3) was recently reported as being necessary to preserve RNA stability via an mTOR mechanism in a cardiac mouse model in adulthood. Here, we demonstrate the link between Srsf3 and mitochondrial integrity in an embryonic cardiomyocyte-specific Srsf3 conditional knockout (cKO) mouse model. Fifteen-day-old Srsf3 cKO mice showed dramatically reduced (below 50%) survival and reduced the left ventricular systolic performance, and histological analysis of these hearts revealed a significant increase in cardiomyocyte size, confirming the severe remodeling induced by Srsf3 deletion. RNA-seq analysis of the hearts of 5-day-old Srsf3 cKO mice revealed early changes in expression levels and alternative splicing of several transcripts related to mitochondrial integrity and oxidative phosphorylation. Likewise, the levels of several protein complexes of the electron transport chain decreased, and mitochondrial complex I-driven respiration of permeabilized cardiac muscle fibers from the left ventricle was impaired. Furthermore, transmission electron microscopy analysis showed disordered mitochondrial length and cristae structure. Together with its indispensable role in the physiological maintenance of mouse hearts, these results highlight the previously unrecognized function of Srsf3 in regulating the mitochondrial integrity.


Asunto(s)
Regulación de la Expresión Génica , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/patología , Factores de Empalme Serina-Arginina/fisiología , Empalme Alternativo , Animales , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación Oxidativa , RNA-Seq
8.
Circulation ; 142(23): 2240-2258, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33070627

RESUMEN

BACKGROUND: Cardiac hypertrophy is a key biological response to injurious stresses such as pressure overload and, when excessive, can lead to heart failure. Innate immune activation by danger signals, through intracellular pattern recognition receptors such as nucleotide-binding oligomerization domain 1 (Nod1) and its adaptor receptor-interacting protein 2 (RIP2), might play a major role in cardiac remodeling and progression to heart failure. We hypothesize that Nod1/RIP2 are major contributors to cardiac hypertrophy, but may not be sufficient to fully express the phenotype alone. METHODS: To elucidate the contribution of Nod1/RIP2 signaling to cardiac hypertrophy, we randomized Nod1-/-, RIP2-/-, or wild-type mice to transverse aortic constriction or sham operations. Cardiac hypertrophy, fibrosis, and cardiac function were examined in these mice. RESULTS: Nod1 and RIP2 proteins were upregulated in the heart after transverse aortic constriction, and this was paralleled by increased expression of mitochondrial proteins, including mitochondrial antiviral signaling protein (MAVS). Nod1-/- and RIP2-/- mice subjected to transverse aortic constriction exhibited better survival, improved cardiac function, and decreased cardiac hypertrophy. Downstream signal transduction pathways that regulate inflammation and fibrosis, including NF (nuclear factor) κB and MAPK (mitogen-activated protein kinase)-GATA4/p300, were reduced in both Nod1-/- and RIP2-/- mice after transverse aortic constriction compared with wild-type mice. Coimmunoprecipitation of extracted cardiac proteins and confocal immunofluorescence microscopy showed that Nod1/RIP2 interaction was robust and that this complex also included MAVS as an essential component. Suppression of MAVS expression attenuated the complex formation, NF κB signaling, and myocyte hypertrophy. Interrogation of mitochondrial function compared in the presence or ablation of MAVS revealed that MAVS serves to suppress mitochondrial energy output and mediate fission/fusion related dynamic changes. The latter is possibly linked to mitophagy during cardiomyocytes stress, which may provide an intriguing link between innate immune activation and mitochondrial energy balance under stress or injury conditions. CONCLUSIONS: We have identified that innate immune Nod1/RIP2 signaling is a major contributor to cardiac remodeling after stress. This process is critically joined by and regulated through the mitochondrial danger signal adapter MAVS. This novel complex coordinates remodeling, inflammatory response, and mitochondrial energy metabolism in stressed cardiomyocytes. Thus, Nod1/RIP2/MAVS signaling complex may represent an attractive new therapeutic approach toward heart failure.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Cardiomegalia/inmunología , Metabolismo Energético/fisiología , Inmunidad Innata/fisiología , Proteína Adaptadora de Señalización NOD1/inmunología , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Recién Nacidos , Cardiomegalia/metabolismo , Cardiomegalia/patología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Transducción de Señal/fisiología
9.
Am J Physiol Endocrinol Metab ; 320(5): E864-E873, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33645254

RESUMEN

Regular exercise has profound metabolic influence on the liver, but effects on bile acid (BA) metabolism are less well known. BAs are synthesized exclusively in the liver from cholesterol via the rate-limiting enzyme cholesterol 7 alpha-hydroxylase (CYP7A1). BAs contribute to the solubilization and absorption of lipids and serve as important signaling molecules, capable of systemic endocrine function. Circulating BAs increase with obesity and insulin resistance, but effects following exercise and diet-induced weight loss are unknown. To test if improvements in fitness and weight loss as a result of exercise training enhance BA metabolism, we measured serum concentrations of total BAs (conjugated and unconjugated primary and secondary BAs) in sedentary, obese, insulin-resistant women (N = 11) before (PRE) and after (POST) a ∼14-wk exercise and diet-induced weight loss intervention. BAs were measured in serum collected after an overnight fast and during an oral glucose tolerance test (OGTT). Serum fibroblast growth factor 19 (FGF19; a regulator of BA synthesis) and 7-alpha-hydroxy-cholesten-3-one (C4, a marker of CYP7A1 enzymatic activity) also were measured. Using linear mixed-model analyses and the change in V̇O2peak (mL/min/kg) as a covariate, we observed that exercise and weight loss intervention decreased total fasting serum BA by ∼30% (P = 0.001) and increased fasting serum C4 concentrations by 55% (P = 0.004). C4 was significantly correlated with serum total BAs only in the POST condition, whereas serum FGF19 was unchanged. These data indicate that a fitness and weight loss intervention modifies BA metabolism in obese women and suggest that improved metabolic health associates with higher postabsorptive (fasting) BA synthesis. Furthermore, pre- vs. postintervention patterns of serum C4 following an OGTT support the hypothesis that responsiveness of BA synthesis to postprandial inhibition is improved after exercise and weight loss.NEW & NOTEWORTHY Exercise and weight loss in previously sedentary, insulin-resistant women facilitates a significant improvement in insulin sensitivity and fitness that may be linked to changes in bile acid metabolism. Diet-induced weight loss plus exercise-induced increases in fitness promote greater postabsorptive bile acid synthesis while also sensitizing the bile acid metabolic system to feedback inhibition during a glucose challenge when glucose and insulin are elevated.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Biomarcadores/sangre , Ejercicio Físico/fisiología , Obesidad/metabolismo , Pérdida de Peso/fisiología , Adulto , Ácidos y Sales Biliares/biosíntesis , Ácidos y Sales Biliares/sangre , Biomarcadores/metabolismo , Glucemia/metabolismo , Dieta Reductora , Terapia por Ejercicio , Femenino , Humanos , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Persona de Mediana Edad , Obesidad/sangre , Obesidad/terapia , Regulación hacia Arriba
10.
PLoS Comput Biol ; 16(6): e1007882, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32492067

RESUMEN

Molecular quantitative trait locus (QTL) analyses are increasingly popular to explore the genetic architecture of complex traits, but existing studies do not leverage shared regulatory patterns and suffer from a large multiplicity burden, which hampers the detection of weak signals such as trans associations. Here, we present a fully multivariate proteomic QTL (pQTL) analysis performed with our recently proposed Bayesian method LOCUS on data from two clinical cohorts, with plasma protein levels quantified by mass-spectrometry and aptamer-based assays. Our two-stage study identifies 136 pQTL associations in the first cohort, of which >80% replicate in the second independent cohort and have significant enrichment with functional genomic elements and disease risk loci. Moreover, 78% of the pQTLs whose protein abundance was quantified by both proteomic techniques are confirmed across assays. Our thorough comparisons with standard univariate QTL mapping on (1) these data and (2) synthetic data emulating the real data show how LOCUS borrows strength across correlated protein levels and markers on a genome-wide scale to effectively increase statistical power. Notably, 15% of the pQTLs uncovered by LOCUS would be missed by the univariate approach, including several trans and pleiotropic hits with successful independent validation. Finally, the analysis of extensive clinical data from the two cohorts indicates that the genetically-driven proteins identified by LOCUS are enriched in associations with low-grade inflammation, insulin resistance and dyslipidemia and might therefore act as endophenotypes for metabolic diseases. While considerations on the clinical role of the pQTLs are beyond the scope of our work, these findings generate useful hypotheses to be explored in future research; all results are accessible online from our searchable database. Thanks to its efficient variational Bayes implementation, LOCUS can analyze jointly thousands of traits and millions of markers. Its applicability goes beyond pQTL studies, opening new perspectives for large-scale genome-wide association and QTL analyses. Diet, Obesity and Genes (DiOGenes) trial registration number: NCT00390637.


Asunto(s)
Teorema de Bayes , Proteínas Sanguíneas/genética , Sitios de Carácter Cuantitativo , Biomarcadores/sangre , Estudio de Asociación del Genoma Completo , Humanos
11.
FASEB J ; 33(12): 13515-13526, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31581846

RESUMEN

In utero overnutrition can predispose offspring to metabolic disease. Although the mechanisms are unclear, increased oxidative stress accelerating cellular aging has been shown to play a role. Mitochondria are the main site of reactive oxygen species (ROS) production in most cell types. Levels of ROS and the risk for oxidative damage are dictated by the balance between ROS production and antioxidant defense mechanisms. Originally considered as toxic species, physiologic levels of ROS are now known to be essential cell signaling molecules. Using a model of maternal overnutrition in C57BL6N mice, we investigate the mechanisms involved in the development of insulin resistance (IR) in muscle. In red and white gastrocnemius muscles of offspring, we are the first to report characteristics of oxidative phosphorylation, H2O2 production, activity of mitoflashes, and electron transport chain supercomplex formation. Results demonstrate altered mitochondrial function with reduced response to glucose in offspring of mice fed a high-fat and high-sucrose diet, increases in mitochondrial leak respiration, and a reduction in ROS production in red gastrocnemius in response to palmitoyl carnitine. We also demonstrate differences in supercomplex formation between red and white gastrocnemius, which may be integral to fiber-type specialization. We conclude that in this model of maternal overnutrition, mitochondrial alterations occur before the development of IR.-McMurray, F., MacFarlane, M., Kim, K., Patten, D. A., Wei-LaPierre, L., Fullerton, M. D., Harper, M. E. Maternal diet-induced obesity alters muscle mitochondrial function in offspring without changing insulin sensitivity.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Intolerancia a la Glucosa/patología , Resistencia a la Insulina , Mitocondrias Musculares/patología , Obesidad/fisiopatología , Estrés Oxidativo , Animales , Femenino , Intolerancia a la Glucosa/metabolismo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Ratones , Ratones Endogámicos C57BL , Mitocondrias Musculares/metabolismo , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo
12.
FASEB J ; 33(8): 9263-9278, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31112400

RESUMEN

Mitochondria are highly dynamic organelles that respond rapidly to a number of stressors to regulate energy transduction, cell death signaling, and reactive oxygen species generation. We hypothesized that mitochondrial remodeling, comprising both structural and functional alterations, following ionizing radiation (IR) may underlie some of the tenets of radiobiology. Mesenchymal stem cells (MSCs) are precursors of bone marrow stroma and are altered in acute myeloid leukemia and by radiation and chemotherapy. Here, we report on changes in mitochondrial remodeling in human MSCs following X-ray IR. Mitochondrial function was significantly increased in MSCs 4 h after IR as measured by mitochondrial oxygen consumption. Consistent with this elevated functional effect, electron transport chain supercomplexes were also increased in irradiated samples. In addition, mitochondria were significantly, albeit modestly, elongated, as measured by high-throughput automated confocal imaging coupled with automated mitochondrial morphometric analyses. We also demonstrate in fibroblasts that mitochondrial remodeling is required for the adaptation of cells to IR. To determine novel mechanisms involved in mitochondrial remodeling, we performed quantitative proteomics on isolated mitochondria from cells following IR. Label-free quantitative mitochondrial proteomics revealed notable changes in proteins in irradiated samples and identified prosaposin, and potentially its daughter protein saposin-B, as a potential candidate for regulating mitochondrial function following IR. Whereas research into the biologic effects of cellular irradiation has long focused on nuclear DNA effects, our experimental work, along with that of others, is finding that mitochondrial effects may have broader implications in the field of stress adaptation and cell death in cancer (including leukemia) and other disease states.-Patten, D. A., Ouellet, M., Allan, D. S., Germain, M., Baird, S. D., Harper, M.-E., Richardson, R. B. Mitochondrial adaptation in human mesenchymal stem cells following ionizing radiation.


Asunto(s)
Adaptación Fisiológica , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de la radiación , Mitocondrias/efectos de la radiación , Animales , Western Blotting , Citrato (si)-Sintasa/metabolismo , Citocromos c/metabolismo , Daño del ADN/efectos de la radiación , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Células HeLa , Humanos , Ratones , Mitocondrias/metabolismo , Oxidación-Reducción/efectos de la radiación , Consumo de Oxígeno/efectos de la radiación , Radiación Ionizante , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
13.
Am J Physiol Endocrinol Metab ; 317(6): E999-E1014, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31526287

RESUMEN

Insulin resistance has wide-ranging effects on metabolism, but there are knowledge gaps regarding the tissue origins of systemic metabolite patterns and how patterns are altered by fitness and metabolic health. To address these questions, plasma metabolite patterns were determined every 5 min during exercise (30 min, ∼45% of V̇o2peak, ∼63 W) and recovery in overnight-fasted sedentary, obese, insulin-resistant women under controlled conditions of diet and physical activity. We hypothesized that improved fitness and insulin sensitivity following a ∼14-wk training and weight loss intervention would lead to fixed workload plasma metabolomics signatures reflective of metabolic health and muscle metabolism. Pattern analysis over the first 15 min of exercise, regardless of pre- versus postintervention status, highlighted anticipated increases in fatty acid tissue uptake and oxidation (e.g., reduced long-chain fatty acids), diminution of nonoxidative fates of glucose [e.g., lowered sorbitol-pathway metabolites and glycerol-3-galactoside (possible glycerolipid synthesis metabolite)], and enhanced tissue amino acid use (e.g., drops in amino acids; modest increase in urea). A novel observation was that exercise significantly increased several xenometabolites ("non-self" molecules, from microbes or foods), including benzoic acid-salicylic acid-salicylaldehyde, hexadecanol-octadecanol-dodecanol, and chlorogenic acid. In addition, many nonannotated metabolites changed with exercise. Although exercise itself strongly impacted the global metabolome, there were surprisingly few intervention-associated differences despite marked improvements in insulin sensitivity, fitness, and adiposity. These results and previously reported plasma acylcarnitine profiles support the principle that most metabolic changes during submaximal aerobic exercise are closely tethered to absolute ATP turnover rate (workload), regardless of fitness or metabolic health status.


Asunto(s)
Aminoácidos/metabolismo , Ejercicio Físico/fisiología , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina , Metaboloma , Obesidad/terapia , Conducta Sedentaria , Programas de Reducción de Peso , Adiposidad , Adulto , Ayuno , Femenino , Humanos , Metabolómica , Persona de Mediana Edad , Obesidad/metabolismo , Oxidación-Reducción , Consumo de Oxígeno , Aptitud Física
14.
Mol Carcinog ; 58(11): 2161-2174, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31486135

RESUMEN

Metabolic reprogramming (including the Warburg effect) is a hallmark of cancer, yet the association between the altered metabolism and chemoresistance remains elusive. Hexokinase II (HKII) is a key metabolic enzyme and is upregulated in multiple cancers. In this study, we examined the impact of targeting metabolism via silencing of HKII on chemoresistance in ovarian cancer (OVCA). In addition, the regulatory molecular mechanism of tumor metabolism was examined using gain- and loss-of-function approaches in epithelial OVCA cell lines of various histological subtypes. We demonstrated that cisplatin (CDDP)-induced p53-mediated HKII downregulation is a determinant of chemosensitivity in OVCA. Silencing of HKII sensitized chemoresistant OVCA cells to apoptosis in a p53-dependent manner. As a negative regulator, p53 suppressed HKII transcription by promoter binding and decreased glycolysis. Pyruvate dehydrogenase kinase-1 (PDK1) is a key regulator of cell proliferation involved in Akt signaling axis. Our Gene Expression Profiling Interactive Analysis (GEPIA) and molecular studies also revealed that PDK1, an upstream activator strongly correlates with HKII expression and regulates its metabolic activity. Finally, we demonstrated that the clinically approved drug metformin sensitizes chemoresistant OVCA cells to CDDP via PDK1-HKII pathway. Collectively, our data implicate that p53--PDK1-HKII axis is a central regulatory component of metabolism conferring chemoresistance in OVCA.


Asunto(s)
Carcinoma Epitelial de Ovario/tratamiento farmacológico , Hexoquinasa/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Proteína p53 Supresora de Tumor/genética , Apoptosis/efectos de los fármacos , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Proliferación Celular/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hexoquinasa/antagonistas & inhibidores , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/efectos de los fármacos
15.
EMBO J ; 33(22): 2676-91, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25298396

RESUMEN

Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation-induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein-dependent manner.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/enzimología , Dinámicas Mitocondriales/fisiología , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Animales , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , GTP Fosfohidrolasas/genética , Células HeLa , Humanos , Ratones , Mitocondrias/ultraestructura , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/genética , Consumo de Oxígeno/fisiología , Multimerización de Proteína/fisiología
16.
FASEB J ; 31(2): 814-827, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27871066

RESUMEN

Uncoupling protein 3 (UCP3) is highly selectively expressed in skeletal muscle and is known to lower mitochondrial reactive oxygen species and promote fatty acid oxidation; however, the global impact of UCP3 activity on skeletal muscle and whole-body metabolism have not been extensively studied. We utilized untargeted metabolomics to identify novel metabolites that distinguish mice overexpressing UCP3 in muscle, both at rest and after exercise regimens that challenged muscle metabolism, to potentially unmask subtle phenotypes. Male wild-type (WT) and muscle-specific UCP3-overexpressing transgenic (UCP3 Tg) C57BL/6J mice were compared with or without a 5 wk endurance training protocol at rest or after an acute exercise bout (EB). Skeletal muscle, liver, and plasma samples were analyzed by gas chromatography time-of-flight mass spectrometry. Discriminant metabolites were considered if within the top 99th percentile of variable importance measurements obtained from partial least-squares discriminant analysis models. A total of 80 metabolites accurately discriminated UCP3 Tg mice from WT when modeled within a specific exercise condition (i.e., untrained/rested, endurance trained/rested, untrained/EB, and endurance trained/EB). Results revealed that several amino acids and amino acid derivatives in skeletal muscle and plasma of UCP3 Tg mice (e.g., Asp, Glu, Lys, Tyr, Ser, Met) were significantly reduced after an EB; that metabolites associated with skeletal muscle glutathione/Met/Cys metabolism (2-hydroxybutanoic acid, oxoproline, Gly, and Glu) were altered in UCP3 Tg mice across all training and exercise conditions; and that muscle metabolite indices of dehydrogenase activity were increased in UCP3 Tg mice, suggestive of a shift in tissue NADH/NAD+ ratio. The results indicate that mitochondrial UCP3 activity affects metabolism well beyond fatty acid oxidation, regulating biochemical pathways associated with amino acid metabolism and redox status. That select metabolites were altered in liver of UCP3 Tg mice highlights that changes in muscle UCP3 activity can also affect other organ systems, presumably through changes in systemic metabolite trafficking.-Aguer, C., Piccolo, B. D., Fiehn, O., Adams, S. H., Harper, M.-E. A novel amino acid and metabolomics signature in mice overexpressing muscle uncoupling protein 3.


Asunto(s)
Aminoácidos/metabolismo , Regulación de la Expresión Génica/fisiología , Metabolómica , Proteína Desacopladora 3/metabolismo , Animales , Animales Modificados Genéticamente , Ciclo del Ácido Cítrico/fisiología , Ácidos Grasos/sangre , Ácidos Grasos/metabolismo , Masculino , Ratones , Músculo Esquelético , Oxidación-Reducción , Condicionamiento Físico Animal , Proteína Desacopladora 3/genética
17.
Am J Respir Crit Care Med ; 195(7): 889-905, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27735193

RESUMEN

RATIONALE: Effective and rapid bacterial clearance is a fundamental determinant of outcomes in sepsis. DJ-1 is a well-established reactive oxygen species (ROS) scavenger. OBJECTIVES: Because cellular ROS status is pivotal to inflammation and bacterial killing, we determined the role of DJ-1 in bacterial sepsis. METHODS: We used cell and murine models with gain- and loss-of-function experiments, plasma, and cells from patients with sepsis. MEASUREMENTS AND MAIN RESULTS: Stimulation of bone marrow-derived macrophages (BMMs) with endotoxin resulted in increased DJ-1 mRNA and protein expression. Cellular and mitochondrial ROS was increased in DJ-1-deficient (-/-) BMMs compared with wild-type. In a clinically relevant model of polymicrobial sepsis (cecal ligation and puncture), DJ-1-/- mice had improved survival and bacterial clearance. DJ-1-/- macrophages exhibited enhanced phagocytosis and bactericidal activity in vitro, and adoptive transfer of DJ-1-/- bone marrow-derived mononuclear cells rescued wild-type mice from cecal ligation and puncture-induced mortality. In stimulated BMMs, DJ-1 inhibited ROS production by binding to p47phox, a critical component of the NADPH oxidase complex, disrupting the complex and facilitating Nox2 (gp91phox) ubiquitination and degradation. Knocking down DJ-1 (siRNA) in THP-1 (human monocytic cell line) and polymorphonuclear cells from patients with sepsis enhanced bacterial killing and respiratory burst. DJ-1 protein levels were elevated in plasma from patients with sepsis. Higher levels of circulating DJ-1 were associated with increased organ failure and death. CONCLUSIONS: These novel findings reveal DJ-1 impairs optimal ROS production for bacterial killing with important implications for host survival in sepsis.


Asunto(s)
Proteína Desglicasa DJ-1/sangre , Sepsis/sangre , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Especies Reactivas de Oxígeno/sangre
18.
Trends Biochem Sci ; 38(12): 592-602, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24120033

RESUMEN

During the cellular oxidation of fuels, electrons are used to power the proton pumps of the mitochondrial electron transport chain (ETC) and ultimately drive ATP synthesis and the reduction of molecular oxygen to water. During these oxidative processes, some electrons can 'spin off' during fuel oxidation and electron transport to univalently reduce O2, forming reactive oxygen species (ROS). In excess, ROS can be detrimental; however, at low concentrations oxyradicals are essential signaling molecules. Mitochondria thus use a battery of systems to finely control types and levels of ROS, including antioxidants. Several antioxidant systems depend on glutathione. Here, we review mitochondrial ROS homeostatic systems, including emerging knowledge about roles of glutathione in redox balance and the control of protein function by post-translational modification.


Asunto(s)
Metabolismo Energético , Glutatión/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/biosíntesis , Antioxidantes/metabolismo , Transporte de Electrón
19.
J Physiol ; 595(6): 2099-2113, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28025824

RESUMEN

KEY POINTS: Muscle-derived thermogenesis during acute cold exposure in humans consists of a combination of cold-induced increases in skeletal muscle proton leak and shivering. Daily cold exposure results in an increase in brown adipose tissue oxidative capacity coupled with a decrease in the cold-induced skeletal muscle proton leak and shivering intensity. Improved coupling between electromyography-determined muscle activity and whole-body heat production following cold acclimation suggests a maintenance of ATPase-dependent thermogenesis and decrease in skeletal muscle ATPase independent thermogenesis. Although daily cold exposure did not change the fibre composition of the vastus lateralis, the fibre composition was a strong predictor of the shivering pattern evoked during acute cold exposure. ABSTRACT: We previously showed that 4 weeks of daily cold exposure in humans can increase brown adipose tissue (BAT) volume by 45% and oxidative metabolism by 182%. Surprisingly, we did not find a reciprocal reduction in shivering intensity when exposed to a mild cold (18°C). The present study aimed to determine whether changes in skeletal muscle oxidative metabolism or shivering activity could account for these unexpected findings. Nine men participated in a 4 week cold acclimation intervention (10°C water circulating in liquid-conditioned suit, 2 h day-1 , 5 days week-1 ). Shivering intensity and pattern were measured continuously during controlled cold exposure (150 min at 4 °C) before and after the acclimation. Muscle biopsies from the m. vastus lateralis were obtained to measure oxygen consumption rate and proton leak of permeabilized muscle fibres. Cold acclimation elicited a modest 21% (P < 0.05) decrease in whole-body and m. vastus lateralis shivering intensity. Furthermore, cold acclimation abolished the acute cold-induced increase in proton leak. Although daily cold exposure did not change the fibre composition of the m. vastus lateralis, fibre composition was a strong predictor of the shivering pattern evoked during acute cold. We conclude that muscle-derived thermogenesis during acute cold exposure in humans is not only limited to shivering, but also includes cold-induced increases in proton leak. The efficiency of muscle oxidative phosphorylation improves with cold acclimation, suggesting that reduced muscle thermogenesis occurs through decreased proton leak, in addition to decreased shivering intensity as BAT capacity and activity increase. These changes occur with no net difference in whole-body thermogenesis.


Asunto(s)
Aclimatación/fisiología , Tejido Adiposo Pardo/fisiología , Frío , Músculo Esquelético/fisiología , Termogénesis/fisiología , Adulto , Humanos , Masculino , Cadenas Pesadas de Miosina/metabolismo , Consumo de Oxígeno , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA