Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Virol J ; 21(1): 67, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509569

RESUMEN

Since 1997, highly pathogenic avian influenza viruses, such as H5N1, have been recognized as a possible pandemic hazard to men and the poultry business. The rapid rate of mutation of H5N1 viruses makes the whole process of designing vaccines extremely challenging. Here, we used an in silico approach to design a multi-epitope vaccine against H5N1 influenza A virus using hemagglutinin (HA) and neuraminidase (NA) antigens. B-cell epitopes, Cytotoxic T lymphocyte (CTL) and Helper T lymphocyte (HTL) were predicted via IEDB, NetMHC-4 and NetMHCII-2.3 respectively. Two adjuvants consisting of Human ß-defensin-3 (HßD-3) along with pan HLA DR-binding epitope (PADRE) have been chosen to induce more immune response. Linkers including KK, AAY, HEYGAEALERAG, GPGPGPG and double EAAAK were utilized to link epitopes and adjuvants. This construct encodes a protein having 350 amino acids and 38.46 kDa molecular weight. Antigenicity of ~ 1, the allergenicity of non-allergen, toxicity of negative and solubility of appropriate were confirmed through Vaxigen, AllerTOP, ToxDL and DeepSoluE, respectively. The 3D structure of H5N1 was refined and validated with a Z-Score of - 0.87 and an overall Ramachandran of 99.7%. Docking analysis showed H5N1 could interact with TLR7 (docking score of - 374.08 and by 4 hydrogen bonds) and TLR8 (docking score of - 414.39 and by 3 hydrogen bonds). Molecular dynamics simulations results showed RMSD and RMSF of 0.25 nm and 0.2 for H5N1-TLR7 as well as RMSD and RMSF of 0.45 nm and 0.4 for H5N1-TLR8 complexes, respectively. Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) confirmed stability and continuity of interaction between H5N1-TLR7 with the total binding energy of - 29.97 kJ/mol and H5N1-TLR8 with the total binding energy of - 23.9 kJ/mol. Investigating immune response simulation predicted evidence of the ability to stimulate T and B cells of the immunity system that shows the merits of this H5N1 vaccine proposed candidate for clinical trials.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Vacunas , Animales , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Epítopos de Linfocito T/genética , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Epítopos de Linfocito B , Biología Computacional/métodos , Simulación del Acoplamiento Molecular , Vacunas de Subunidad/genética
3.
Mol Biol Rep ; 49(2): 1545-1549, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35028855

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in more than 4.4 million deaths worldwide as of August 24, 2021. Viral infections such as SARS-CoV2 are associated with endoplasmic reticulum (ER) stress and also increased the level of reactive oxygen species. Activating transcription factor 4 (ATF4) is preferentially translated under integrated stress conditions and controls the genes involved in protein homeostasis, amino acid transport and metabolism, and also protection from oxidative stress. The GRP78, regulated either directly or indirectly by ATF4, is an essential chaperone in the ER and overexpressed and appears on the surface of almost all cells during stress and function as a SARS-CoV2 receptor. In this mini-review article, we briefly discuss the effects of SARS-CoV2 infection on the ER stress, and then the stress modulator functions of ATF4 and GRP78 as novel therapeutic targets were highlighted. Finally, the effects of GRP78 inhibitory components as potential factors for targeted therapies for COVID-19 critical cases were discussed.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , COVID-19/metabolismo , Chaperón BiP del Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Humanos , SARS-CoV-2/patogenicidad
4.
Cell Mol Biol Lett ; 27(1): 63, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907817

RESUMEN

The pandemic outbreak of coronavirus disease 2019 (COVID-19) has created health challenges in all parts of the world. Understanding the entry mechanism of this virus into host cells is essential for effective treatment of COVID-19 disease. This virus can bind to various cell surface molecules or receptors, such as angiotensin-converting enzyme 2 (ACE2), to gain cell entry. Respiratory failure and pulmonary edema are the most important causes of mortality from COVID-19 infections. Cytokines, especially proinflammatory cytokines, are the main mediators of these complications. For normal respiratory function, a healthy air-blood barrier and sufficient blood flow to the lungs are required. In this review, we first discuss airway epithelial cells, airway stem cells, and the expression of COVID-19 receptors in the airway epithelium. Then, we discuss the suggested molecular mechanisms of endothelial dysfunction and blood vessel damage in COVID-19. Coagulopathy can be caused by platelet activation leading to clots, which restrict blood flow to the lungs and lead to respiratory failure. Finally, we present an overview of the effects of immune and non-immune cells and cytokines in COVID-19-related respiratory failure.


Asunto(s)
COVID-19 , Insuficiencia Respiratoria , Citocinas , Humanos , Peptidil-Dipeptidasa A , SARS-CoV-2
5.
Drug Dev Ind Pharm ; 47(9): 1353-1361, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34666567

RESUMEN

High morbidity and mortality caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made coronavirus disease 2019 (COVID-19) the leading challenge for health experts all over the world. Currently, there is no specific treatment for COVID-19; however, thanks to worldwide intense attempts, novel vaccines such as mRNA-1273 (Moderna TX, Inc.) and BNT162b2 (Biontech/Pfizer) were developed very fast and FDA approved them for emergency use. Nanomedicine-based drug delivery can be an advanced therapeutic strategy to deal with clinical complications of COVID-19. Given the fact that SARS-CoV-2 typically affects the respiratory tract, application of inhalable nanoparticles (NPs) for targeted drug delivery to the alveolar space appears to be an effective and promising therapeutic strategy. Loading the medicinal components into NPs enhances the stability, bioavailability, solubility and sustained release of them. This approach can circumvent major challenges in efficient drug delivery such as solubility and any adverse impact of medicinal components due to off-targeted delivery and resulting systemic complications. Inhalable NPs could be delivered through nasal sprays, inhalers, and nebulizers. NPs also could interfere in virus attachment to host cells and prevent infection. Moreover, nanomedicine-based technologies can facilitate accurate and rapid detection of virus compared to the conventional methods. In this review, the nano-based theranostics modalities for the management of respiratory complications of COVID-19 were discussed.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , Medicina de Precisión , SARS-CoV-2
6.
Crit Care Med ; 48(5): 654-662, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31923030

RESUMEN

OBJECTIVE: To assess the number of adult critical care beds in Asian countries and regions in relation to population size. DESIGN: Cross-sectional observational study. SETTING: Twenty-three Asian countries and regions, covering 92.1% of the continent's population. PARTICIPANTS: Ten low-income and lower-middle-income economies, five upper-middle-income economies, and eight high-income economies according to the World Bank classification. INTERVENTIONS: Data closest to 2017 on critical care beds, including ICU and intermediate care unit beds, were obtained through multiple means, including government sources, national critical care societies, colleges, or registries, personal contacts, and extrapolation of data. MEASUREMENTS AND MAIN RESULTS: Cumulatively, there were 3.6 critical care beds per 100,000 population. The median number of critical care beds per 100,000 population per country and region was significantly lower in low- and lower-middle-income economies (2.3; interquartile range, 1.4-2.7) than in upper-middle-income economies (4.6; interquartile range, 3.5-15.9) and high-income economies (12.3; interquartile range, 8.1-20.8) (p = 0.001), with a large variation even across countries and regions of the same World Bank income classification. This number was independently predicted by the World Bank income classification on multivariable analysis, and significantly correlated with the number of acute hospital beds per 100,000 population (r = 0.19; p = 0.047), the universal health coverage service coverage index (r = 0.35; p = 0.003), and the Human Development Index (r = 0.40; p = 0.001) on univariable analysis. CONCLUSIONS: Critical care bed capacity varies widely across Asia and is significantly lower in low- and lower-middle-income than in upper-middle-income and high-income countries and regions.


Asunto(s)
Cuidados Críticos/estadística & datos numéricos , Capacidad de Camas en Hospitales/estadística & datos numéricos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Asia , Estudios Transversales , Países Desarrollados/estadística & datos numéricos , Países en Desarrollo/estadística & datos numéricos , Humanos
7.
Indian J Crit Care Med ; 19(1): 21-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25624646

RESUMEN

BACKGROUND: Stress-related mucosal disease occurs in many critically ill-patients within 24 h of admission. Proton pump inhibitor therapy has been documented to produce more potent inhibition of gastric acid secretion than histamine 2 receptor antagonists. This study aimed to compare extemporaneous preparations of omeprazole, pantoprazole oral suspension and intravenous (IV) pantoprazole on the gastric pH in intensive care unit patients. MATERIALS AND METHODS: This was a randomized single-blind-study. Patients of ≥ 16 years of age with a nasogastric tube, who required mechanical ventilation for ≥ 48 h, were eligible for inclusion. The excluded patients were those with active gastrointestinal bleeding, known allergy to omeprazole and pantoprazole and those intolerant to the nasogastric tube. Fifty-six patients were randomized to treatment with omeprazole suspension 2 mg/ml (40 mg every day), pantoprazole suspension 2 mg/ml (40 mg every day) and IV pantoprazole (40 mg every day) for up to 14 days. Gastric aspirates were sampled before and 1-2.5 h after the drug administration for the pH measurement using an external pH meter. Data were analyzed using SPSS (version 21.0). RESULTS: In this study, 56 critically ill-patients (39 male, 17 female, mean age: 61.5 ± 15.65 years) were followed for the control of the gastric pH. On each of the 14 trial days the mean of the gastric pH alteration was significantly higher in omeprazole and pantoprazole suspension-treated patients than in IV pantoprazole-treated patients (P < 0.001). CONCLUSION: Omeprazole and pantoprazole oral suspension are more effective than IV pantoprazole in increasing the gastric pH.

8.
Biochim Biophys Acta Mol Basis Dis ; 1871(1): 167500, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260679

RESUMEN

The viral replication can impress through cellular miRNAs. Indeed, either the antiviral responses or the viral infection changes through cellular miRNAs resulting in affecting many regulatory signaling pathways. One of the microRNA families that is effective in human cancers, diseases, and viral infections is the miR-29 family. Members of miR-29 family are effective in different viral infections as their roles have appeared in regulation of immunity pathways either in innate immunity including interferon and inflammatory pathways or in adaptive immunity including activation of T-cells and antibodies production. Although miR-29a affects viral replication by suppressing antiviral responses, it can inhibit the expression of viral mRNAs via binding to their 3'UTR. In the present work, we discuss the evidence related to miR-29a and viral infection through host immunity regulation. We also review roles of other miR-29 family members by focusing on their role as biomarkers for diagnosing and targets for viral diseases management.

9.
Lancet Reg Health West Pac ; 44: 100982, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38143717

RESUMEN

Background: The coronavirus disease 2019 (COVID-19) pandemic highlighted the importance of critical care. The aim of the current study was to compare the number of adult critical care beds in relation to population size in Asian countries and regions before (2017) and during (2022) the pandemic. Methods: This observational study collected data closest to 2022 on critical care beds (intensive care units and intermediate care units) in 12 middle-income and 7 high-income economies (using the 2022-2023 World Bank classification), through a mix of methods including government sources, national critical care societies, personal contacts, and data extrapolation. Data were compared with a prior study from 2017 of the same countries and regions. Findings: The cumulative number of critical care beds per 100,000 population increased from 3.0 in 2017 to 9.4 in 2022 (p = 0.003). The median figure for middle-income economies increased from 2.6 (interquartile range [IQR] 1.7-7.8) to 6.6 (IQR 2.2-13.3), and that for high-income economies increased from 11.4 (IQR 7.3-22.8) to 13.9 (IQR 10.7-21.7). Only 3 countries did not see a rise in bed capacity. Where data were available in 2022, 10.9% of critical care beds were in single rooms (median 5.0% in middle-income and 20.3% in high-income economies), and 5.3% had negative pressure (median 0.7% in middle-income and 18.5% in high-income economies). Interpretation: Critical care bed capacity in the studied Asian countries and regions increased close to three-fold from 2017 to 2022. Much of this increase was attributed to middle-income economies, but substantial heterogeneity exists. Funding: None.

10.
Int J Crit Illn Inj Sci ; 13(4): 192-198, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38292399

RESUMEN

In coronavirus disease 2019 (COVID-19), the formation of cytokine storm may have a role in worsening of the disease. By attaching the cytokines like interleukin-6 to the cytokine receptors on a cell surface, Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathway will be activated in the cytoplasm lead to hyperinflammatory conditions and acute respiratory distress syndrome. Inhibition of JAK/STAT pathway may be useful to prevent the formation of cytokine storm. Tofacitinib is a pan inhibitor of JAKs. In this review, the main characteristics of tofacitinib and its usefulness against COVID-19 pneumonia were reviewed. Tofacitinib may be a hopeful therapeutic candidate against COVID-19 respiratory injury since it inhibits a range of inflammatory pathways. Hence, the agent may be considered a potential therapeutic against the post-COVID-19 respiratory damage. Compared to other JAK inhibitors (JAKi), the administration of tofacitinib in COVID-19 patients may be safer and more effective. Other JAKi such as baricitinib are related to severe adverse events such as thrombotic events compared to more common side effects of tofacitinib.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA