Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Bioinformatics ; 22(1): 525, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34706640

RESUMEN

BACKGROUND: Molecular interaction networks summarize complex biological processes as graphs, whose structure is informative of biological function at multiple scales. Simultaneously, omics technologies measure the variation or activity of genes, proteins, or metabolites across individuals or experimental conditions. Integrating the complementary viewpoints of biological networks and omics data is an important task in bioinformatics, but existing methods treat networks as discrete structures, which are intrinsically difficult to integrate with continuous node features or activity measures. Graph neural networks map graph nodes into a low-dimensional vector space representation, and can be trained to preserve both the local graph structure and the similarity between node features. RESULTS: We studied the representation of transcriptional, protein-protein and genetic interaction networks in E. coli and mouse using graph neural networks. We found that such representations explain a large proportion of variation in gene expression data, and that using gene expression data as node features improves the reconstruction of the graph from the embedding. We further proposed a new end-to-end Graph Feature Auto-Encoder framework for the prediction of node features utilizing the structure of the gene networks, which is trained on the feature prediction task, and showed that it performs better at predicting unobserved node features than regular MultiLayer Perceptrons. When applied to the problem of imputing missing data in single-cell RNAseq data, the Graph Feature Auto-Encoder utilizing our new graph convolution layer called FeatGraphConv outperformed a state-of-the-art imputation method that does not use protein interaction information, showing the benefit of integrating biological networks and omics data with our proposed approach. CONCLUSION: Our proposed Graph Feature Auto-Encoder framework is a powerful approach for integrating and exploiting the close relation between molecular interaction networks and functional genomics data.


Asunto(s)
Escherichia coli , Redes Neurales de la Computación , Animales , Biología Computacional , Redes Reguladoras de Genes , Ratones , Proteínas
2.
NPJ Syst Biol Appl ; 10(1): 24, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448436

RESUMEN

Genome-scale metabolic models are powerful tools for understanding cellular physiology. Flux balance analysis (FBA), in particular, is an optimization-based approach widely employed for predicting metabolic phenotypes. In model microbes such as Escherichia coli, FBA has been successful at predicting essential genes, i.e. those genes that impair survival when deleted. A central assumption in this approach is that both wild type and deletion strains optimize the same fitness objective. Although the optimality assumption may hold for the wild type metabolic network, deletion strains are not subject to the same evolutionary pressures and knock-out mutants may steer their metabolism to meet other objectives for survival. Here, we present FlowGAT, a hybrid FBA-machine learning strategy for predicting essentiality directly from wild type metabolic phenotypes. The approach is based on graph-structured representation of metabolic fluxes predicted by FBA, where nodes correspond to enzymatic reactions and edges quantify the propagation of metabolite mass flow between a reaction and its neighbours. We integrate this information into a graph neural network that can be trained on knock-out fitness assay data. Comparisons across different model architectures reveal that FlowGAT predictions for E. coli are close to those of FBA for several growth conditions. This suggests that essentiality of enzymatic genes can be predicted by exploiting the inherent network structure of metabolism. Our approach demonstrates the benefits of combining the mechanistic insights afforded by genome-scale models with the ability of deep learning to infer patterns from complex datasets.


Asunto(s)
Escherichia coli , Aprendizaje Automático , Escherichia coli/genética , Redes Neurales de la Computación , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA