Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Microbiol ; : 1-20, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470107

RESUMEN

Autophagy is a crucial immune defense mechanism that controls the survival and pathogenesis of M. tb by maintaining cell physiology during stress and pathogen attack. The E3-Ub ligases (PRKN, SMURF1, and NEDD4) and autophagy receptors (SQSTM1, TAX1BP1, CALCOCO2, OPTN, and NBR1) play key roles in this process. Galectins (LGALSs), which bind to sugars and are involved in identifying damaged cell membranes caused by intracellular pathogens such as M. tb, are essential. These include LGALS3, LGALS8, and LGALS9, which respond to endomembrane damage and regulate endomembrane damage caused by toxic chemicals, protein aggregates, and intracellular pathogens, including M. tb. They also activate selective autophagy and de novo endolysosome biogenesis. LGALS3, LGALS9, and LGALS8 interact with various components to activate autophagy and repair damage, while CGAS-STING1 plays a critical role in providing immunity against M. tb by activating selective autophagy and producing type I IFNs with antimycobacterial functions. STING1 activates cGAMP-dependent autophagy which provides immunity against various pathogens. Additionally, cytoplasmic surveillance pathways activated by ds-DNA, such as inflammasomes mediated by NLRP3 and AIM2 complexes, control M. tb. Modulation of E3-Ub ligases with small regulatory molecules of LGALSs and TRIM proteins could be a novel host-based therapeutic approach for controlling TB.

2.
Biochem J ; 480(14): 1079-1096, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37306466

RESUMEN

Mycobacterium tuberculosis (M. tb), the causative pathogen of tuberculosis (TB) remains the leading cause of death from single infectious agent. Furthermore, its evolution to multi-drug resistant (MDR) and extremely drug-resistant (XDR) strains necessitate de novo identification of drug-targets/candidates or to repurpose existing drugs against known targets through drug repurposing. Repurposing of drugs has gained traction recently where orphan drugs are exploited for new indications. In the current study, we have combined drug repurposing with polypharmacological targeting approach to modulate structure-function of multiple proteins in M. tb. Based on previously established essentiality of genes in M. tb, four proteins implicated in acceleration of protein folding (PpiB), chaperone assisted protein folding (MoxR1), microbial replication (RipA) and host immune modulation (S-adenosyl dependent methyltransferase, sMTase) were selected. Genetic diversity analyses in target proteins showed accumulation of mutations outside respective substrate/drug binding sites. Using a composite receptor-template based screening method followed by molecular dynamics simulations, we have identified potential candidates from FDA approved drugs database; Anidulafungin (anti-fungal), Azilsartan (anti-hypertensive) and Degarelix (anti-cancer). Isothermal titration calorimetric analyses showed that the drugs can bind with high affinity to target proteins and interfere with known protein-protein interaction of MoxR1 and RipA. Cell based inhibitory assays of these drugs against M. tb (H37Ra) culture indicates their potential to interfere with pathogen growth and replication. Topographic assessment of drug-treated bacteria showed induction of morphological aberrations in M. tb. The approved candidates may also serve as scaffolds for optimization to future anti-mycobacterial agents which can target MDR strains of M. tb.


Asunto(s)
Antituberculosos , Reposicionamiento de Medicamentos , Mycobacterium tuberculosis , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacología , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Anidulafungina/farmacología , Proteínas Bacterianas/genética , Estructura Terciaria de Proteína , Simulación de Dinámica Molecular
3.
J Med Virol ; 95(7): e28959, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37485696

RESUMEN

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) regulates autophagic flux by blocking the fusion of autophagosomes with lysosomes, causing the accumulation of membranous vesicles for replication. Multiple SARS-CoV-2 proteins regulate autophagy with significant roles attributed to ORF3a. Mechanistically, open reading frame 3a (ORF3a) forms a complex with UV radiation resistance associated, regulating the functions of the PIK3C3-1 and PIK3C3-2 lipid kinase complexes, thereby modulating autophagosome biogenesis. ORF3a sequesters VPS39 onto the late endosome/lysosome, inhibiting assembly of the soluble NSF attachement protein REceptor (SNARE) complex and preventing autolysosome formation. ORF3a promotes the interaction between BECN1 and HMGB1, inducing the assembly of PIK3CA kinases into the ER (endoplasmic reticulum) and activating reticulophagy, proinflammatory responses, and ER stress. ORF3a recruits BORCS6 and ARL8B to lysosomes, initiating the anterograde transport of the virus to the plasma membrane. ORF3a also activates the SNARE complex (STX4-SNAP23-VAMP7), inducing fusion of lysosomes with the plasma membrane for viral egress. These mechanistic details can provide multiple targets for inhibiting SARS-CoV-2 by developing host- or host-pathogen interface-based therapeutics.


Asunto(s)
Autofagia , SARS-CoV-2 , Humanos , COVID-19 , Proteínas SNARE
4.
Int J Med Microbiol ; 312(5): 151558, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35842995

RESUMEN

Infections are known to cause tumours though more attributed to viruses. Strong epidemiological links suggest association between bacterial infections and cancers as exemplified by Helicobacter pylori and Salmonella spp. Infection with Mycobacterium tuberculosis (M. tb), the etiological agent of tuberculosis (TB), has been reported to predispose patients to lung cancers and possibly in other organs as well. While this etiopathogenesis warrant inclusion of M. tb in IARC's (International Agency for Research on Cancer) classified carcinogenic agents, the lack of well-defined literature and direct experimental studies have barred the research community from accepting the role of M. tb as a carcinogen. The background research, case studies, and experimental data extensively reviewed in Roy et al., 2021; provoke the debate for elucidating carcinogenic properties of M. tb. Moreover, proper, timely and correct diagnosis of both diseases (which often mimic each other) will save millions of lives that are misdiagnosed. In addition, use of Anti Tubercular therapy (ATT) in misdiagnosed non-TB patients contributes to drug resistance in population thereby severely impacting TB disease control measures. Research in this arena can further aid in saving billions of dollars by preventing the superfluous use of cancer drugs. In order to achieve these goals, it is imperative to identify the underlying mechanism of M. tb infection acting as major risk factor for cancer.


Asunto(s)
Helicobacter pylori , Mycobacterium tuberculosis , Neoplasias , Tuberculosis , Antituberculosos/uso terapéutico , Humanos , Neoplasias/complicaciones , Neoplasias/epidemiología , Tuberculosis/complicaciones , Tuberculosis/diagnóstico , Tuberculosis/epidemiología
5.
Int J Med Microbiol ; 312(1): 151544, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34922100

RESUMEN

Mycobacterium tuberculosis (M. tuberculosis) encodes an essential enzyme acetyl ornithine aminotransferase ArgD (Rv1655) of arginine biosynthetic pathway which plays crucial role in M. tuberculosis growth and survival. ArgD catalyzes the reversible conversion of N-acetylornithine and 2 oxoglutarate into glutamate-5-semialdehyde and L-glutamate. It also possesses succinyl diaminopimelate aminotransferase activity and can thus carry out the corresponding step in lysine biosynthesis. These essential roles played by ArgD in amino acid biosynthetic pathways highlight it as an important metabolic chokepoint thus an important drug target. We showed that M. tuberculosis ArgD rescues the growth of ΔargD E. coli grown in minimal media validating its functional importance. Phylogenetic analysis of M. tuberculosis ArgD showed homology with proteins in gram positive bacteria, pathogenic and non-pathogenic mycobacteria suggesting the essentiality of this protein. ArgD is a secretory protein that could be utilized by M. tuberculosis to modulate host innate immunity as its moonlighting function. In-silico analysis predicted it to be a highly antigenic protein. The recombinant ArgD protein when exposed to macrophage cells induced enhanced production of pro-inflammatory cytokines TNF, IL6 and IL12 in a dose dependent manner. ArgD also induced the increased production of innate immune effector molecule NOS2 and NO in macrophages. We also demonstrated ArgD mediated activation of the canonical NFkB pathway. Notably, we also show that ArgD is a specific TLR4 agonist involved in the activation of pro-inflammatory signaling for sustained production of effector cytokines. Intriguingly, ArgD protein treatment activated macrophages to acquire the M1 phenotype through the increased surface expression of MHCII and costimulatory molecules CD80 and CD86. ArgD induced robust B-cell response in immunized mice, validating its antigenicity potential as predicted by the in-silico analysis. These properties of M. tuberculosis ArgD signify its functional plasticity that could be exploited as a possible drug target to combat tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Animales , Proteínas Bacterianas/genética , Escherichia coli , Ratones , Filogenia , Transaminasas/genética
6.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008950

RESUMEN

Mycobacterium tuberculosis (M.tb) is a successful pathogen that can reside within the alveolar macrophages of the host and can survive in a latent stage. The pathogen has evolved and developed multiple strategies to resist the host immune responses. M.tb escapes from host macrophage through evasion or subversion of immune effector functions. M.tb genome codes for PE/PPE/PE_PGRS proteins, which are intrinsically disordered, redundant and antigenic in nature. These proteins perform multiple functions that intensify the virulence competence of M.tb majorly by modulating immune responses, thereby affecting immune mediated clearance of the pathogen. The highly repetitive, redundant and antigenic nature of PE/PPE/PE_PGRS proteins provide a critical edge over other M.tb proteins in terms of imparting a higher level of virulence and also as a decoy molecule that masks the effect of effector molecules, thereby modulating immuno-surveillance. An understanding of how these proteins subvert the host immunological machinery may add to the current knowledge about M.tb virulence and pathogenesis. This can help in redirecting our strategies for tackling M.tb infections.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Interacciones Huésped-Patógeno/inmunología , Proteínas de la Membrana/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Tuberculosis/microbiología , Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Susceptibilidad a Enfermedades/inmunología , Glicina/metabolismo , Humanos , Evasión Inmune , Inmunomodulación , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Virulencia
7.
Int J Med Microbiol ; 311(3): 151495, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33730677

RESUMEN

Permeation through bacterial cells for exchange or uptake of biomolecules and ions invariably depend upon the existence of pore-forming proteins (porins) in their outer membrane. Mycobacterium tuberculosis (M. tb) harbours one of the most rigid cell envelopes across bacterial genera and is devoid of the classical porins for solute transport across the cell membrane. Though canonical porins are incompatible with the evolution of permeability barrier, porin like activity has been reported from membrane preparations of pathogenic mycobacteria. This suggests a sophisticated transport mechanism that has been elusive until now, along with the protein family responsible for it. Recent evidence suggests that these slow-growing mycobacteria have co-opted some of PE/PPE family proteins as molecular transport channels, in place of porins, to facilitate uptake of nutrients required to thrive in the restrictive host environment. These reports advocate that PE/PPE proteins, due to their structural ability, have a potential role in importing small molecules to the cell's interior. This mechanism unveils how a successful pathogen overcomes its restrictive membrane's transport limitations for selective uptake of nutrients. If extrapolated to have a role in drug transport, these channels could help understand the emergence of drug resistance. Further, as these proteins are associated with the export of virulence factors, they can be exploited as novel drug targets. There remains, however, an interesting question that as the PE/PPE proteins can allow the 'import' of molecules from outside the cell, is the reverse transport also possible across the M. tb membrane. In this review, we have discussed recent evidence supporting PE/PPE's role as a specific transport channel for selective uptake of small molecule nutrients and, as possible molecular export machinery of M. tb. This newly discovered role as transmembrane channels demands further research on this enigmatic family of proteins to comprehend the pathomechanism of this very smart pathogen.


Asunto(s)
Mycobacterium tuberculosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Emigración e Inmigración , Mycobacterium tuberculosis/metabolismo , Porinas/genética
8.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502041

RESUMEN

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak in December 2019 has caused a global pandemic. The rapid mutation rate in the virus has created alarming situations worldwide and is being attributed to the false negativity in RT-PCR tests. It has also increased the chances of reinfection and immune escape. Recently various lineages namely, B.1.1.7 (Alpha), B.1.617.1 (Kappa), B.1.617.2 (Delta) and B.1.617.3 have caused rapid infection around the globe. To understand the biophysical perspective, we have performed molecular dynamic simulations of four different spikes (receptor binding domain)-hACE2 complexes, namely wildtype (WT), Alpha variant (N501Y spike mutant), Kappa (L452R, E484Q) and Delta (L452R, T478K), and compared their dynamics, binding energy and molecular interactions. Our results show that mutation has caused significant increase in the binding energy between the spike and hACE2 in Alpha and Kappa variants. In the case of Kappa and Delta variants, the mutations at L452R, T478K and E484Q increased the stability and intra-chain interactions in the spike protein, which may change the interaction ability of neutralizing antibodies to these spike variants. Further, we found that the Alpha variant had increased hydrogen interaction with Lys353 of hACE2 and more binding affinity in comparison to WT. The current study provides the biophysical basis for understanding the molecular mechanism and rationale behind the increase in the transmissivity and infectivity of the mutants compared to wild-type SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/transmisión , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/ultraestructura , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , COVID-19/virología , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Mutación , Estabilidad Proteica , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/ultraestructura , Termodinámica
9.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502303

RESUMEN

Mycobacterium tuberculosis (M.tb), the pathogen causing tuberculosis, is a major threat to human health worldwide. Nearly 10% of M.tb genome encodes for a unique family of PE/PPE/PGRS proteins present exclusively in the genus Mycobacterium. The functions of most of these proteins are yet unexplored. The PGRS domains of these proteins have been hypothesized to consist of Ca2+ binding motifs that help these intrinsically disordered proteins to modulate the host cellular responses. Ca2+ is an important secondary messenger that is involved in the pathogenesis of tuberculosis in diverse ways. This study presents the calcium-dependent function of the PGRS domain of Rv0297 (PE_PGRS5) in M.tb virulence and pathogenesis. Tandem repeat search revealed the presence of repetitive Ca2+ binding motifs in the PGRS domain of the Rv0297 protein (Rv0297PGRS). Molecular Dynamics simulations and fluorescence spectroscopy revealed Ca2+ dependent stabilization of the Rv0297PGRS protein. Calcium stabilized Rv0297PGRS enhances the interaction of Rv0297PGRS with surface localized Toll like receptor 4 (TLR4) of macrophages. The Ca2+ stabilized binding of Rv0297PGRS with the surface receptor of macrophages enhances its downstream consequences in terms of Nitric Oxide (NO) production and cytokine release. Thus, this study points to hitherto unidentified roles of calcium-modulated PE_PGRS proteins in the virulence of M.tb. Understanding the pathogenic potential of Ca2+ dependent PE_PGRS proteins can aid in targeting these proteins for therapeutic interventions.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Regulación Bacteriana de la Expresión Génica , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Humanos , Macrófagos/microbiología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/crecimiento & desarrollo , Conformación Proteica , Homología de Secuencia
10.
Semin Cell Dev Biol ; 84: 147-157, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29331642

RESUMEN

The biological paradox about how extremophiles persist at extreme ecological conditions throws a fascinating picture of the enormous potential of a single cell to adapt to homeostatic conditions in order to propagate. Unicellular organisms face challenges from both environmental factors and the ecological niche provided by the host tissue. Although the existence of extremophiles and their physiological properties were known for a long time, availability of whole genome sequence has catapulted the study on mechanisms of adaptation and the underlying principles that have enabled these unique organisms to withstand evolutionary and environmental pressures. Comparative genomics has shown that extremophiles possess the unique set of genes and proteins that empower them with biochemical machinery necessary to thrive in extreme environments. The presence of these proteins safeguards the cell against a wide array of extreme conditions such as temperature, pressure, radiations, chemicals, drugs etc. An insight into these adaptive mechanisms in extremophiles may help us to devise strategies to alter the genes and proteins that may have therapeutic potential and commercial value. Here we present an overview of the various adaptations in extremophiles. We also try to explain how mycobacterium channelizes its proteome to survive in stress conditions posed by host immune system.


Asunto(s)
Adaptación Fisiológica/fisiología , Extremófilos/metabolismo , Mycobacterium/metabolismo , Proteoma/metabolismo , Animales , Evolución Biológica , Genómica , Humanos
11.
Med Princ Pract ; 28(4): 301-308, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30893697

RESUMEN

Unlike DNA fingerprinting, which scores for differences in the genome that are phenotype neutral, epigenetic variations are gaining importance in forensic investigations. Methylation of DNA has a broad range of effects on the lifestyle, health status, and physical appearance of individuals. DNA methylation profiling of forensic samples is useful in determination of the cell or tissue type of the DNA source and also for estimation of age. The quality and quantity of the biosample available from the crime scene limits the possible number of DNA methylation tests and the selection of the technology that can be used. Several techniques have been used for DNA methylation analysis for epigenetic investigations of forensic biological samples. However, novel techniques are needed for multiplex analysis of epigenetic markers as the techniques that are currently available require a large amount of high-quality DNA and are also limited in their multiplexing capacities that are often insufficient to fully resolve a forensic query of interest.


Asunto(s)
Dermatoglifia del ADN , Epigenómica , Genética Forense , Humanos
12.
Int J Med Microbiol ; 308(8): 1000-1008, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30190103

RESUMEN

Utility of Mycobacterium indicus pranii (MIP) as a multistage vaccine against mycobacterial infections demands identification of its protective antigens. We explored antigenicity and immunogenicity of a candidate protein MIP_05962 that depicts homology to HSP18 of M. leprae and antigen1 of Mycobacterium tuberculosis. This protein elicited substantial antibody response in immunized mice along with modulation of cellular immune response towards protective Th1 type. Both CD4+ and CD8+ subsets from immunized mice produced hallmark protective cytokines, IFN-γ, TNF-α and IL-2. This protein also enhanced the CD4+ effector memory that could act as first line of defence during infections. These results point to MIP_05962 as a protective antigen that contributes, in conjunction with others, to the protective immunity of this live vaccine candidate.


Asunto(s)
Proteínas Bacterianas/inmunología , ADN Bacteriano/inmunología , Complejo Mycobacterium avium/inmunología , Infección por Mycobacterium avium-intracellulare/inmunología , Células TH1/inmunología , Animales , Proteínas Bacterianas/genética , Citocinas/inmunología , Citocinas/metabolismo , ADN Bacteriano/genética , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunización , Ratones , Ratones Endogámicos BALB C , Complejo Mycobacterium avium/genética , Infección por Mycobacterium avium-intracellulare/microbiología , Cultivo Primario de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Células TH1/metabolismo , Vacunas contra la Tuberculosis/inmunología
13.
Int J Med Microbiol ; 307(8): 481-489, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28950999

RESUMEN

Studies on biofilm related infections are gaining prominence owing to their involvement in majority of clinical infections. Biofilm, considered as a generic mechanism for survival used by pathogenic as well as non-pathogenic microorganisms, involves surface attachment and growth of heterogeneous cells encapsulated within a matrix. The matrix provides ecological niche where partnership of cells endows a community like behaviour that not only enables the cohort to survive local microenvironment stress but also channelizes them to evolve, disseminate and cause resurgence of infections. In this mini-review we highlight the mechanisms used by microbes to develop and sustain biofilms, including the influence of the microbiota. Several strategies to target biofilms have been validated on certain groups of microorganisms and these basically target different stages in the life cycle of biofilm, however comprehensive methods to target microbial biofilms are relatively unknown. In the backdrop of recent reports suggesting that biofilms can harbour multiple species of organisms, we need to relook and devise newer strategies against biofilms. Effective anti-biofilm strategies cannot be confined to a single methodology that can disrupt one pathway but should simultaneously target the various routes adopted by the microorganisms for survival within their ecosystem. An overview of the currently available drugs, their mode of action, genomic targets and translational therapies against biofilm related infection are discussed.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biopelículas/crecimiento & desarrollo , Viabilidad Microbiana , Adhesión Bacteriana , Humanos , Interacciones Microbianas
14.
Nucleic Acids Res ; 43(1): 324-35, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25452339

RESUMEN

The discordant prevalence of Helicobacter pylori and its related diseases, for a long time, fostered certain enigmatic situations observed in the countries of the southern world. Variation in H. pylori infection rates and disease outcomes among different populations in multi-ethnic Malaysia provides a unique opportunity to understand dynamics of host-pathogen interaction and genome evolution. In this study, we extensively analyzed and compared genomes of 27 Malaysian H. pylori isolates and identified three major phylogeographic lineages: hspEastAsia, hpEurope and hpSouthIndia. The analysis of the virulence genes within the core genome, however, revealed a comparable pathogenic potential of the strains. In addition, we identified four genes limited to strains of East-Asian lineage. Our analyses identified a few strain-specific genes encoding restriction modification systems and outlined 311 core genes possibly under differential evolutionary constraints, among the strains representing different ethnic groups. The cagA and vacA genes also showed variations in accordance with the host genetic background of the strains. Moreover, restriction modification genes were found to be significantly enriched in East-Asian strains. An understanding of these variations in the genome content would provide significant insights into various adaptive and host modulation strategies harnessed by H. pylori to effectively persist in a host-specific manner.


Asunto(s)
Genoma Bacteriano , Helicobacter pylori/genética , Enzimas de Restricción-Modificación del ADN/genética , Evolución Molecular , Genes Bacterianos , Genómica , Helicobacter pylori/clasificación , Helicobacter pylori/aislamiento & purificación , Helicobacter pylori/patogenicidad , Humanos , Malasia , Filogenia , Filogeografía , Virulencia
15.
Int J Med Microbiol ; 305(3): 322-6, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25648374

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), is the leading infectious disease which claims one human life every 15-20s globally. The persistence of this deadly disease in human population can be attributed to the ability of the bacterium to stay in latent form. M. tuberculosis possesses a plethora of mechanisms not only to survive latently under harsh conditions inside the host but also modulate the host immune cells in its favour. Various M. tuberculosis gene families have also been described to play a role in this process. Recently, human bone marrow derived mesenchymal stem cells (MSCs) have been reported as a niche for dormant M. tuberculosis. MSCs possess abilities to alter the host immune response. The bacterium finds this self-renewal and immune privileged nature of MSCs very favourable not only to modulate the host immune system, with some help from its own genes, but also to avoid the external drug pressure. We suggest that the MSCs not only provide a resting place for M. tuberculosis but could also, by virtue of their intrinsic ability to disseminate in the body, explain the genesis of extra-pulmonary TB. A similar exploitation of stem cells by other bacterial pathogens is a distinct possibility. It may be likely that other intracellular bacterial pathogens adopt this strategy to 'piggy-back' on to ovarian stem cells to ensure vertical transmission and successful propagation to the next generation.


Asunto(s)
Interacciones Huésped-Patógeno , Evasión Inmune , Células Madre Mesenquimatosas/microbiología , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/fisiología , Humanos
16.
Int J Med Microbiol ; 304(5-6): 742-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24951307

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a leading infectious disease taking one human life every 15s globally. Mycobacterium undergoes reductive evolution; the ancestors have bigger genome size and rich in metabolic pathways. Mycobacterium indicus pranii (MIP) is placed much above Mycobacterium tuberculosis (M.tb) in evolutionary scale and is a non-pathogenic, saprophytic mycobacterium. Our in silico comparative proteomic analyses of virulence factors of M.tb and their homologs in 12 different Mycobacterial species, including MIP, point toward gene cooption as an important mechanism in evolution of mycobacteria. We propose that adaptive changes in niche factors of non-pathogenic mycobacterium, together with novel gene acquisitions, are key players in the evolution of pathogenicity. Antigenic analyses between M.tb and MIP highlighted the importance of PE/PPE family in host immunomodulation, further supporting the likely potential of MIP as an effective vaccine against TB.


Asunto(s)
Proteínas Bacterianas/análisis , Evolución Biológica , Mycobacterium/química , Proteoma/análisis , Proteínas Bacterianas/genética , Biología Computacional/métodos , Humanos , Mycobacterium/genética , Proteoma/genética , Factores de Virulencia/genética
17.
Int J Med Microbiol ; 304(5-6): 620-5, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24863528

RESUMEN

Mycobacterium avium ssp. paratuberculosis (MAP) is an obligate intracellular pathogen. It causes chronic intestinal inflammation in ruminants known as Johne's disease and is associated with human Crohn's disease. Furthermore, association of MAP with other autoimmune diseases, such as type-1 diabetes, has been established in patients from Sardinia (Italy) which is a MAP endemic and genetically isolated region. Due to largest livestock population and consequently high MAP prevalence amidst a very high diabetes incidence in India, we sought to test this association on a limited number of patient samples from Hyderabad. Our results of ELISA with MAP lysate and MAP-specific protein MAP3738c as well as PCR/real-time PCR of MAP-specific sequences IS900 and/or f57 indicated that, in contrast to Sardinian diabetic patients, MAP infection in blood is not discerned in diabetic patients in Hyderabad. The association of a mycobacterial trigger with diabetes therefore could well be a population-specific phenomenon, highly dependent on genetic repertoire and the environment of susceptible populations. However, a larger study is needed in order to confirm this.


Asunto(s)
Complicaciones de la Diabetes , Mycobacterium avium subsp. paratuberculosis/aislamiento & purificación , Paratuberculosis/epidemiología , Paratuberculosis/microbiología , Adulto , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , India/epidemiología , Italia , Masculino , Reacción en Cadena de la Polimerasa
19.
Nucleic Acids Res ; 40(15): 7113-22, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22618876

RESUMEN

Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading infectious disease taking one human life every 15 s globally. The two well-characterized strains H(37)Rv and H(37)Ra, derived from the same parental strain M. tuberculosis H(37), show dramatically different pathogenic phenotypes. PE/PPE gene family, comprising of 176 open reading frames and present exclusively in genus Mycobacterium, accounts for ∼10% of the M. tuberculosis genome. Our comprehensive in silico analyses of PE/PPE family of H(37)Ra and virulent H(37)Rv strains revealed genetic differences between these strains in terms of several single nucleotide variations and InDels and these manifested in changes in physico-chemical properties, phosphorylation sites, and protein: protein interacting domains of the corresponding proteomes. Similar comparisons using the 13 sigma factor genes, 36 members of the mammalian cell entry family, 13 mycobacterial membrane protein large family members and 11 two-component signal transduction systems along with 5 orphaned response regulators and 2 orphaned sensor kinases failed to reveal very significant difference between H(37)Rv and H(37)Ra, reinforcing the importance of PE/PPE genes. Many of these changes between H(37)Rv and H(37)Ra can be correlated to differences in pathogenesis and virulence of the two strains.


Asunto(s)
Proteínas Bacterianas/genética , Familia de Multigenes , Mycobacterium tuberculosis/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Genómica , Datos de Secuencia Molecular , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Proteómica , Virulencia/genética
20.
Nucleic Acids Res ; 40(21): 10832-50, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22965120

RESUMEN

Understanding the evolutionary and genomic mechanisms responsible for turning the soil-derived saprophytic mycobacteria into lethal intracellular pathogens is a critical step towards the development of strategies for the control of mycobacterial diseases. In this context, Mycobacterium indicus pranii (MIP) is of specific interest because of its unique immunological and evolutionary significance. Evolutionarily, it is the progenitor of opportunistic pathogens belonging to M. avium complex and is endowed with features that place it between saprophytic and pathogenic species. Herein, we have sequenced the complete MIP genome to understand its unique life style, basis of immunomodulation and habitat diversification in mycobacteria. As a case of massive gene acquisitions, 50.5% of MIP open reading frames (ORFs) are laterally acquired. We show, for the first time for Mycobacterium, that MIP genome has mosaic architecture. These gene acquisitions have led to the enrichment of selected gene families critical to MIP physiology. Comparative genomic analysis indicates a higher antigenic potential of MIP imparting it a unique ability for immunomodulation. Besides, it also suggests an important role of genomic fluidity in habitat diversification within mycobacteria and provides a unique view of evolutionary divergence and putative bottlenecks that might have eventually led to intracellular survival and pathogenic attributes in mycobacteria.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Genes Bacterianos , Mycobacterium/genética , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Especiación Genética , Genoma Bacteriano , Hemeritrina/genética , Secuencias Repetitivas Esparcidas , Proteínas de Transporte de Membrana/genética , Familia de Multigenes , Mycobacterium/inmunología , Mycobacterium/metabolismo , Plásmidos/genética , Proteoma/genética , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA