Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 467: 116497, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003365

RESUMEN

Novel psychoactive substances (NPS) consumption has increased in recent years, thus NPS-induced cognitive decline is a current source of concern. Alpha-pyrrolidinovalerophenone (α-PVP), as a member of NPS, is consumed throughout regions like Washington, D.C., Eastern Europe, and Central Asia. Mitochondrial dysfunction plays an essential role in NPS-induced cognitive impairment. Meanwhile, no investigations have been conducted regarding the α-PVP impact on spatial learning/memory and associated mechanisms. Consequently, our study investigated the α-PVP effect on spatial learning/memory and brain mitochondrial function. Wistar rats received different α-PVP doses (5, 10, and 20 mg/kg) intraperitoneally for 10 sequential days; 24 h after the last dose, spatial learning/memory was evaluated by the Morris Water Maze (MWM). Furthermore, brain mitochondrial protein yield and mitochondrial function variables (Mitochondrial swelling, succinate dehydrogenase (SDH) activity, lipid peroxidation, Mitochondrial Membrane Potential (MMP), Reactive oxygen species (ROS) level, brain ADP/ATP proportion, cytochrome c release, Mitochondrial Outer Membrane (MOM) damage) were examined. α-PVP higher dose (20 mg/kg) significantly impaired spatial learning/memory, mitochondrial protein yield, and brain mitochondrial function (caused reduced SDH activity, increased mitochondrial swelling, elevated ROS generation, increased lipid peroxidation, collapsed MMP, increased cytochrome c release, elevated brain ADP/ATP proportion, and MOM damage). Moreover, the lower dose of α-PVP (5 mg/kg) did not alter spatial learning/memory and brain mitochondrial function. These findings provide the first evidence regarding impaired spatial learning/memory following repeated administration of α-PVP and the possible role of brain mitochondrial dysfunction in these cognitive impairments.


Asunto(s)
Encefalopatías , Aprendizaje Espacial , Ratas , Animales , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Citocromos c/metabolismo , Aprendizaje por Laberinto , Mitocondrias , Encéfalo , Adenosina Trifosfato/metabolismo , Hipocampo , Estrés Oxidativo
2.
Drug Chem Toxicol ; : 1-13, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37501618

RESUMEN

Chlorpyrifos (CPF) is a widely used pesticide that can impair body organs. Nonetheless, metformin is known for its protective role against dysfunction at cellular and molecular levels led by inflammatory and oxidative stress. This study aimed to investigate the modulatory impacts of metformin on CPF-induced heart and lung damage. Following the treatment of Wistar rats with different combinations of metformin and CPF, plasma, as well as heart and lung tissues, were isolated to examine the level of oxidative stress biomarkers like reactive oxygen species (ROS) and malondialdehyde (MDA), inflammatory cytokines such as tumor necrosis alpha (TNF-α), high mobility group box 1 (HMGB1) gene, deoxyribonucleic acid (DNA) damage, lactate, ADP/ATP ratio, expression of relevant genes (TRADD, TERT, KL), and along with histological analysis. Based on the findings, metformin significantly modulates the impairments in heart and lung tissues induced by CPF.

3.
Toxicol Mech Methods ; 32(4): 288-301, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34711111

RESUMEN

Aluminum phosphide (AlP) poisoning is common in many countries responsible for high mortality. The heart is the main target organ in AlP poisoning. Several studies have reported the beneficial effects of cannabidiol (CBD) in reducing heart injuries. This study aimed to investigate the possible protective effect of CBD on cardiac toxicity caused by AlP poisoning. Study groups included almond oil, normal saline, sole CBD (100 µg/kg), AlP (11.5 mg/kg), and four groups of AlP + CBD (following AlP gavage, CBD administrated at doses of 5, 25, 50, and 100 µg/kg via intravenous (iv) injection). Thirty minutes after AlP treatment, an electronic cardiovascular device (PowerLab) was used to record electrocardiographic (ECG) changes, heart rate (HR), and blood pressure (BP) for three hours. Cardiac tissue was examined for the activities of mitochondrial complexes, ADP/ATP ratio, the release of cytochrome C, mitochondrial membrane potential (MMP), apoptosis, oxidative stress parameter, and cardiac biomarkers at 12 and 24 hours time points. AlP administration caused abnormal ECG, decreased HR, and BP. AlP also significantly reduced mitochondrial complex I and IV activity and ADP/ATP ratio. The level of cytochrome C release, apoptosis, oxidative stress, and cardiac biomarkers was considerably increased by AlP, which was compensated following CBD administration. CBD was able to improve hemodynamic function to some extent in AlP poisoned rats. CBD restored ATP levels and mitochondrial function and decreased oxidative damage and thus, prevented the heart cells from entering the apoptotic stage. Further clinical trials are needed to explore any possible benefits of CBD in AlP-poisoned patients.


Asunto(s)
Cannabidiol , Fosfinas , Animales , Cannabidiol/toxicidad , Electrocardiografía , Frecuencia Cardíaca , Humanos , Mitocondrias , Fosfinas/toxicidad , Ratas , Ratas Wistar
4.
Cancer Cell Int ; 21(1): 483, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521402

RESUMEN

Colorectal cancer (CRC) is one of the most malignant cancer types, characterized by elevated mortality rate and treatment resistance. Despite the progress achieved in the explanation of the molecular basis of the disease as well as introducing potential biomarkers in the clinical practice, further investigation is essential to identify innovative molecules that contribute to colorectal carcinogenesis. Circular RNAs (circRNAs) are a novel and unexplored RNA type, associated with various human pathological conditions. Recently, circRNAs have been identified to be enriched and stable in exosomes and can exert their functions when exosomes reach neighboring or distant cells. Increasing evidence indicates that these so called exosomal circRNAs (exo-circRNAs) act as signaling molecules to regulate cancer proliferation, metastasis, and sensitivity to radio- and chemotherapy. This review aims to discuss the latest progress in exo-circRNAs studies in CRC with an emphasis on their potential as promising diagnostic molecular markers and therapeutic targets.

5.
Toxicol Mech Methods ; 31(9): 631-643, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34219611

RESUMEN

Aluminum phosphide (AlP) causes serious poisoning in which severe cardiac suppression is the significant lethal consequence. According to evidence, levosimendan can exert outstanding cardiac support and protection in different pathological conditions. This study aimed to investigate the mechanisms by which levosimendan may alleviate cardiovascular toxicity due to AlP intoxication in the rat model. The groups included control group (normal saline only), sole levosimendan groups (12, 24, 48 µg/kg), AlP group (10 mg/kg), and AlP + levosimendan groups receiving 12, 24, 48 µg/kg levosimendan intraperitoneally 30 min after AlP administration. Electrocardiographic (ECG) parameters (QRS and PR duration and ST height), heart rate, and blood pressure were monitored for 180 minutes. Also, after 24 h of poisoning, echocardiography was applied to assess left ventricle function. Evaluation of the biochemical parameters in heart tissue, including mitochondrial complexes I, II, IV activity, ADP/ATP ratio, the rate of apoptosis, malondialdehyde (MDA), lactate, and troponin I levels, were done after 12 and 24 h. AlP-induced ECG abnormalities (PR duration and ST height), reduction in heart rate, blood pressure, cardiac output, ejection fraction, and stroke volume were improved by levosimendan administration. Besides, levosimendan significantly improved complex IV activity, the ADP/ATP ratio, apoptosis, MDA, lactate, and troponin I level following AlP-poisoning. Our results suggest that levosimendan might alleviate AlP-induced cardiotoxicity by modulating mitochondrial activity and improving cardiac function. However, the potential clinical use of levosimendan in this toxicity needs more investigations.


Asunto(s)
Ecocardiografía , Electrocardiografía , Animales , Fosfinas , Ratas , Ratas Wistar , Simendán
6.
Chem Res Toxicol ; 33(9): 2338-2350, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32701268

RESUMEN

Endocrine-disrupting chemicals (EDCs) such as bisphenol A (BPA), which is widely used in the plastic industry, have recently been considered to be involved in the pathogenesis of metabolic disorders, including obesity and diabetes. The present study aimed to examine the potentially detrimental effects of BPA on glucose and energy metabolism at the epigenetic level. The blood glucose profile of Wistar rats receiving different oral doses of BPA over 28 days was assessed. At the end of the treatment, the islets of Langerhans were isolated and purified, and their RNA content was extracted. MicroRNA (miRNA) profiling was evaluated using the next generation sequencing (NGS) method. After performing bioinformatic analysis of the NGS data, the gene ontology and data enrichment in terms of significantly disturbed miRNAs were evaluated through different databases, including Enrichr and DIANA tools. Additionally, the DNA methylation and the level of expression of two critical genes in glucose metabolism (PPARγ, Pdx1) were assessed. Subchronic BPA exposure (406 mg/kg/day) disturbed the blood glucose profile (fasting blood glucose and oral glucose tolerance) of Wistar rats and resulted in considerable cytotoxicity. NGS data analyses revealed that the expression of some crucial miRNAs involved in ß-cell metabolism and diabetes occurrence and development, including miR-375, miR-676, miR-126-a, and miR-340-5p, was significantly disrupted. According to the DNA methylation evaluation, both PPARγ and Pdx1 genes underwent changes in the methylation level at particular loci on the gene's promoter. The expression levels of these genes were upregulated and downregulated, respectively. Overall, subchronic BPA exposure could cause epigenetic dysregulation at the gene level and interfere with the expression of key miRNAs and the methylation process of genes involved in glucose homeostasis. Understanding the exact underlying mechanisms by which BPA and other EDCs induce endocrine disturbance could be of great importance in the way of finding new preventive and therapeutic approaches.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Epigénesis Genética/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , Fenoles/farmacología , Administración Oral , Animales , Compuestos de Bencidrilo/administración & dosificación , Biología Computacional , Metilación de ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Epigénesis Genética/genética , Islotes Pancreáticos/metabolismo , Masculino , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Fenoles/administración & dosificación , Ratas , Ratas Wistar
7.
J Pharm Pharm Sci ; 23: 243-258, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32649855

RESUMEN

PURPOSE: The current project aimed to design a simple, highly sensitive, and economical label-free electrochemical aptasensor for determination of prostate-specific antigen (PSA), as the gold standard biomarker for prostate cancer diagnosis. The aptasensor was set up using a screen-printed carbon electrode (SPCE) modified by gold nanoparticles (Au NPs) conjugated to thiolated aptamers. METHODS: Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were implemented for electrochemical (EC) characterization of the aptasensor. The determination of PSA was also performed through differential pulse voltammetry (DPV) in [Fe (CN) 6]3-/4- electrolyte solution. RESULTS: The present aptasensor was shown an outstanding linear response in the concentration range of 1 pg/mL - 200 ng/mL with a remarkably lower limit of detection of 0.077 pg/mL. The optimum concentration for PSA separation and the optimum incubation time for antigen-aptamer binding were determined by observing and electing the highest electrochemical responses in a specified time or concentration. CONCLUSION: According to the results of the specificity tests, the designed aptasensor did not show any significant interactions with other analytes in real samples. Clinical functionality of the aptasensor was appraised in serum samples of healthy individuals and patients examining the PSA level through the fabricated aptasensor and the reference methods. Both methods are comparable in sensitivity. The present fabricated PSA aptasensor with substantial characteristics of ultra- sensitivity and cost-effectiveness can be conventionally built and used for the routine check-up of the men for prostate problems.


Asunto(s)
Aptámeros de Nucleótidos/química , Biomarcadores de Tumor/análisis , Técnicas Biosensibles , Técnicas Electroquímicas , Antígeno Prostático Específico/análisis , Neoplasias de la Próstata/diagnóstico , Oro/química , Humanos , Masculino , Nanopartículas del Metal/química , Tamaño de la Partícula
8.
Ecotoxicol Environ Saf ; 201: 110802, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32531573

RESUMEN

Extended exposure to inorganic arsenic through contaminated drinking water has been linked with increased incidence of diabetes mellitus. The most common exposure occurs through the consumption of contaminated drinking water mainly through geogenic sources of inorganic arsenic. Epigenetic modifications are important mechanisms through which environmental pollutants could exert their toxic effects. Bisulfite sequencing polymerase chain reaction method followed by Sanger sequencing was performed for DNA methylation analysis. Our results showed that sodium arsenite treatment significantly reduced insulin secretion in pancreatic islets. It was revealed that the methylation of glucose transporter 2 (Glut2) gene was changed at two cytosine-phosphate-guanine (CpG) sites (-1743, -1734) in the promoter region of the sodium arsenite-treated group comparing to the control. No changes were observed in the methylation status of peroxisome proliferator-activated receptor-gamma (PPARγ), pancreatic and duodenal homeobox 1 (Pdx1) and insulin 2 (Ins2) CpG sites in the targeted regions. Measuring the gene expression level showed increase in Glut2 expression, while the expression of insulin (INS) and Pdx1 were significantly affected by sodium arsenite treatment. This study revealed that exposure to sodium arsenite changed the DNA methylation pattern of Glut2, a key transporter of glucose entry into the pancreatic beta cells (ß-cells). Our data suggested possible epigenetic-mediated toxicity mechanism for arsenite-induced ß-cells dysfunction. Further studies are needed to dissect the precise epigenetic modulatory activity of sodium arsenite that affect the biogenesis of insulin.


Asunto(s)
Arsenitos/toxicidad , Metilación de ADN/efectos de los fármacos , Transportador de Glucosa de Tipo 2/genética , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Compuestos de Sodio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Epigénesis Genética/efectos de los fármacos , Proteínas de Homeodominio/genética , Técnicas In Vitro , Insulina/genética , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Masculino , Regiones Promotoras Genéticas , Ratas , Ratas Wistar , Transactivadores/genética
9.
Phytother Res ; 34(3): 526-545, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31793087

RESUMEN

Obesity is a medical situation in which excess body fat has gathered because of imbalance between energy intake and energy expenditure. In spite of the fact that the variety of studies are available for obesity treatment and management, its "globesity" still remains a big challenge all over the world. The current systematic review and meta-analysis aimed to evaluate the efficacy, safety, and mechanisms of effective herbal medicines in the management and treatment of obesity and metabolic syndrome in human. We systematically searched all relevant clinical trials via Web of Science, Scopus, PubMed, and the Cochrane database to assess the effects of raw or refined products derived from plants or parts of plants on obesity and metabolic syndrome in overweight and obesity adult subjects. All studies conducted by the end of May 2019 were considered in the systematic review. Data were extracted independently by two experts. The quality assessment was assessed using Consolidated Standards of Reporting Trials checklist. The main outcomes were anthropometric indices and metabolic syndrome components. Pooled effect of herbal medicines on obesity and metabolic syndrome were presented as standardized mean difference (SMD) and 95% confidence interval (CI). A total of 279 relevant clinical trials were included. Herbals containing green tea, Phaseolus vulgaris, Garcinia cambogia, Nigella sativa, puerh tea, Irvingia gabonensis, and Caralluma fimbriata and their active ingredients were found to be effective in the management of obesity and metabolic syndrome. In addition, C. fimbriata, flaxseed, spinach, and fenugreek were able to reduce appetite. Meta-analysis showed that intake of green tea resulted in a significant improvement in weight ([SMD]: -0.75 [-1.18, -0.319]), body mass index ([SMD]: -1.2 [-1.82, -0.57]), waist circumference ([SMD]: -1.71 [-2.66, -0.77]), hip circumference ([SMD]: -0.42 [-1.02, -0.19]), and total cholesterol, ([SMD]: -0.43 [-0.77, -0.09]). In addition, the intake of P. vulgaris and N. sativa resulted in a significant improvement in weight ([SMD]: -0.88, 95 % CI: [-1.13, -0.63]) and triglyceride ([SMD]: -1.67, 95 % CI: [-2.54, -0.79]), respectively. High quality trials are still needed to firmly establish the clinical efficacy of the plants in obesity and metabolic syndrome.


Asunto(s)
Síndrome Metabólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Plantas Medicinales , , Triglicéridos/análisis , Adulto , Apetito/efectos de los fármacos , Índice de Masa Corporal , Peso Corporal/efectos de los fármacos , Humanos , Sobrepeso/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Circunferencia de la Cintura/efectos de los fármacos
10.
Crit Rev Clin Lab Sci ; 56(7): 472-492, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31418340

RESUMEN

Regarding the widespread progression of diabetes, its related complications and detrimental effects on human health, investigations on this subject seems compulsory. AMP-activated protein kinase (AMPK) is a serine/threonine kinase and a key player in energy metabolism regulation. AMPK is also considered as a prime target for pharmaceutical and therapeutic studies on disorders such as diabetes, metabolic syndrome and obesity, where the body energy homeostasis is imbalanced. Following the activation of AMPK (physiological or pharmacological), a cascade of metabolic events that improve metabolic health is triggered. While there are several publications on this subject, this is the first report that has focused solely on polyphenols targeting diabetes via AMPK pathway. The multiple characteristics of polyphenolic compounds and their favorable influence on diabetes pathogenesis, as well as their intersections with the AMPK signaling pathway, indicate that these compounds have a beneficial effect on the regulation of glucose homeostasis. PPs could potentially occupy a significant position in the future anti-diabetic drug market.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/enzimología , Descubrimiento de Drogas , Polifenoles/uso terapéutico , Transducción de Señal , Animales , Activación Enzimática/efectos de los fármacos , Humanos , Polifenoles/farmacología
11.
J Cell Biochem ; 120(4): 6209-6222, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30474871

RESUMEN

Aging contributes to an increased risk of developing a number of neurodegenerative and chronic disorders, predominantly related to oxidative stress (OS) and defects in the antioxidant balance. This study focused on the antisenescence effect of four plant species (Falcaria vulgaris, Ixiolirion tataricum, Ajuga chamaecistus, and Scabiosa flavida) on H2 O2 -induced premature senescence in rat NIH3T3 fibroblasts, which were found to be rich in effective phytochemicals with traditional ethnobotanical backgrounds. Plant materials were collected, identified, and extracted. To determine the viability of NIH3T3 cells, an MTT assay was conducted. The levels of OS markers and the senescence-associated ß-galactosidase (SA-ß-GAL) activity were analyzed by the Elisa reader. The cell cycle pattern was evaluated by flow cytometry. The expression of senescence-related inflammatory cytokines and the molecules involved in aging signaling pathways were investigated using the real-time reverse transcription polymerase chain reaction (RT-PCR). H2 O2 treatment decreased cell viability and increased lipid peroxidation (LPO) and the reactive oxygen species (ROS) in NIH3T3s. However, S. flavida exhibited low cytotoxicity, reduced OS and SA-ß-GAL activities in NIH3T3 cells compared with the H2 O2 -treated group. I. tataricum was the second best plant, although it was more toxic to NIHT3T cells. S. flavida decreased G0/G1 arrest and facilitated the G2/M transition of NIH3T3s, also downregulated the expression of p38, p53, p16, and the related inflammatory mediators. S. flavida potentially modulated senescence-associated hallmarks in fibroblasts exposed to H2 O2 , thus it may inhibit the aging process via controlling the OS. Therefore it is a promising candidate for future antiaging explorations.


Asunto(s)
Fibroblastos/citología , Peróxido de Hidrógeno/efectos adversos , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/farmacología , Animales , Apiaceae/química , Asparagales/química , Ciclo Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Dipsacaceae/química , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Lamiaceae/química , Ratones , Células 3T3 NIH , Especies Reactivas de Oxígeno/metabolismo
12.
J Cell Biochem ; 120(9): 16195-16205, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31081130

RESUMEN

Methylmercury (MeHg) is an extremely important environmental toxicant posing serious health risks to human health and a big source of environmental pollutant. Numerous evidence available showing a link between nervous system toxicity and MeHg exposure. Other forms of mercury are reason of metabolic toxic effects and alteration of DNA in the human body. The sources of exposure could be occupational or other environmental settings. In the present study MeHg was orally gavaged to mice, at doses of 2.5, 5, and 10 mg/kg for 4 weeks. Fasting hyperglycemia, activity of hepatic phoshphoenolpyruvate carboxykinase and glucose 6-phoshphate were reported high as compared to control group. Inflammatory markers like, tumor necrosis factor α, the actual end product of inflammatory mediators' cascade pathway was also raised in comparison to control group. Hyperinsulinemia observed in serum showed clear understanding of mercury induced insulin resistance. Moreover, tissue damage due to increased oxidative stress markers like, hepatic lipid peroxidation, 8-deoxygunosine, reactive oxygen species, and carbonyl groups was significantly higher as compared to control group. MeHg caused a significant reduction in antioxidant markers like ferric reducing antioxidant power and total thiol molecules. The present study highlighted that activity of key enzymes involved in glucose metabolism is changed, owing to MeHg induced toxicity in the liver. Induction of similar toxic effects assumed to be stimulated by the production of high quantity free radicals.


Asunto(s)
Biomarcadores/metabolismo , Hiperinsulinismo/inducido químicamente , Hígado/metabolismo , Compuestos de Metilmercurio/efectos adversos , Animales , Hiperinsulinismo/metabolismo , Resistencia a la Insulina , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Compuestos de Metilmercurio/administración & dosificación , Ratones , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
13.
Neurobiol Learn Mem ; 166: 107082, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31493483

RESUMEN

Erythropoietin (EPO), a hematopoietic factor, is one of the promising neuroprotective candidates in neurodegenerative disorders such as Alzheimer's disease (AD). Due to the high molecular weight, hydrophilicity and rapid clearance from circulation, EPO could not completely pass the blood-brain barrier in the case of systemic administration. To overcome this limitation, EPO-loaded Solid Lipid Nanoparticle (EPO-SLN) was developed in this study using a double emulsion solvent evaporation method (W1/O/W2). Glycerin monostearate (GMS), span®80/span®60, Dichloromethane (DCM) and tween®80 were chosen as lipid, internal phase surfactants, solvent, and external aqueous phase surfactant, respectively. After physicochemical evaluations, the effect of EPO-SLN on the beta-amyloid-induced AD-like animal model was investigated. In vivo evaluations, it was demonstrated that the memory was significantly restored in cognitive deficit rats treated with EPO-SLN compared to the rats treated with native drug using the Morris water maze test. In addition, EPO-SLN reduced the oxidative stress, ADP/ATP ratio, and beta-amyloid plaque deposition in the hippocampus more effectively than the free EPO. Hence, the designed SLN can be regarded as a promising system for safe and effective delivery of EPO in the AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Eritropoyetina/uso terapéutico , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Nanopartículas/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Alzheimer/inducido químicamente , Péptidos beta-Amiloides , Animales , Modelos Animales de Enfermedad , Eritropoyetina/administración & dosificación , Hipocampo/efectos de los fármacos , Masculino , Nanopartículas/administración & dosificación , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Wistar , Resultado del Tratamiento
14.
Pharmacol Res ; 130: 241-258, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29258915

RESUMEN

Over the last decades, an exponential increase of efforts concerning the treatment of Alzheimer's disease (AD) has been practiced. Phytochemicals preparations have a millenary background to combat various pathological conditions. Various cinnamon species and their biologically active ingredients have renewed the interest towards the treatment of patients with mild-to-moderate AD through the inhibition of tau protein aggregation and prevention of the formation and accumulation of amyloid-ß peptides into the neurotoxic oligomeric inclusions, both of which are considered to be the AD trademarks. In this review, we presented comprehensive data on the interactions of a number of cinnamon polyphenols (PPs) with oxidative stress and pro-inflammatory signaling pathways in the brain. In addition, we discussed the potential association between AD and diabetes mellitus (DM), vis-à-vis the effluence of cinnamon PPs. Further, an upcoming prospect of AD epigenetic pathophysiological conditions and cinnamon has been sighted. Data was retrieved from the scientific databases such as PubMed database of the National Library of Medicine, Scopus and Google Scholar without any time limitation. The extract of cinnamon efficiently inhibits tau accumulations, Aß aggregation and toxicity in vivo and in vitro models. Indeed, cinnamon possesses neuroprotective effects interfering multiple oxidative stress and pro-inflammatory pathways. Besides, cinnamon modulates endothelial functions and attenuates the vascular cell adhesion molecules. Cinnamon PPs may induce AD epigenetic modifications. Cinnamon and in particular, cinnamaldehyde seem to be effective and safe approaches for treatment and prevention of AD onset and/or progression. However, further molecular and translational research studies as well as prolonged clinical trials are required to establish the therapeutic safety and efficacy in different cinnamon spp.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Cinnamomum zeylanicum , Fármacos Neuroprotectores/uso terapéutico , Preparaciones de Plantas/uso terapéutico , Enfermedad de Alzheimer/genética , Animales , Encéfalo/metabolismo , Cognición/efectos de los fármacos , Epigenómica , Humanos , Fármacos Neuroprotectores/farmacología , Preparaciones de Plantas/farmacología
15.
Arch Toxicol ; 91(1): 109-130, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27761595

RESUMEN

This review discusses the past and recent advancements of biosensors focusing on detection of organophosphorus pesticides (OPs) due to their exceptional use during the last decades. Apart from agricultural benefits, OPs also impose adverse toxicological effects on animal and human population. Conventional approaches such as chromatographic techniques used for pesticide detection are associated with several limitations. A biosensor technology is unique due to the detection sensitivity, selectivity, remarkable performance capabilities, simplicity and on-site operation, fabrication and incorporation with nanomaterials. This study also provided specifications of the most OPs biosensors reported until today based on their transducer system. In addition, we highlighted the application of advanced complementary materials and analysis techniques in OPs detection systems. The availability of these new materials associated with new sensing techniques has led to introduction of easy-to-use analytical tools of high sensitivity and specificity in the design and construction of OPs biosensors. In this review, we elaborated the achievements in sensing systems concerning innovative nanomaterials and analytical techniques with emphasis on OPs.


Asunto(s)
Técnicas Biosensibles , Monitoreo del Ambiente/instrumentación , Modelos Biológicos , Compuestos Organofosforados/análisis , Residuos de Plaguicidas/análisis , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/tendencias , Biología Computacional/tendencias , Nanotecnología/tendencias , Redes Neurales de la Computación , Compuestos Organofosforados/toxicidad , Residuos de Plaguicidas/toxicidad
16.
Arch Toxicol ; 91(9): 3109-3120, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28551710

RESUMEN

Aluminum phosphide (AlP), one of the most commonly used pesticides worldwide, has been the leading cause of self-poisoning mortalities among many Asian countries. The heart is the main organ affected in AlP poisoning. Melatonin has been previously shown to be beneficial in reversing toxic changes in the heart. The present study reveals evidence on the probable protective effects of melatonin on AlP-induced cardiotoxicity in rats. The study groups included a control (almond oil only), ethanol 5% (solvent), sole melatonin (50 mg/kg), AlP (16.7 mg/kg), and 4 AlP + melatonin groups which received 20, 30, 40 and 50 mg/kg of melatonin by intraperitoneal injections following AlP treatment. An electronic cardiovascular monitoring device was used to record the electrocardiographic (ECG) parameters. Heart tissues were studied in terms of oxidative stress biomarkers, mitochondrial complexes activities, ADP/ATP ratio and apoptosis. Abnormal ECG records as well as declined heart rate and blood pressure were found to be related to AlP administration. Based on the results, melatonin was highly effective in controlling AlP-induced changes in the study groups. Significant improvements were observed in the activities of mitochondrial complexes, oxidative stress biomarkers, the activities of caspases 3 and 9, and ADP/ATP ratio following treatment with melatonin at doses of 40 and 50 mg/kg. Our results indicate that melatonin can counteract the AlP-induced oxidative damage in the heart. This is mainly done by maintaining the normal balance of intracellular ATP as well as the prevention of oxidative damage. Further research is warranted to evaluate the possibility of using melatonin as an antidote in AlP poisoning.


Asunto(s)
Compuestos de Aluminio/toxicidad , Cardiotónicos/farmacología , Cardiotoxicidad/prevención & control , Melatonina/farmacología , Fosfinas/toxicidad , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Cardiotoxicidad/etiología , Cardiotoxicidad/mortalidad , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Electrocardiografía , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Ratas Wistar , Superóxido Dismutasa/metabolismo
17.
Environ Toxicol ; 32(10): 2256-2266, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28678435

RESUMEN

Styrene is an aromatic colorless hydrocarbon available in liquid form and highly volatile. In its pure form, it gives a sweet smell. The primary source of exposure in the environment is from plastic materials, rubber industries, packaging materials, insulations, and fiber glass and carpet industry. Natural sources of styrene include: few metabolites in plants which are transferred through food chain. The current study was designed to evaluate styrene toxicity, including: superoxide dismutase (SOD) and protein carbonyl, oxidative stress, glucose-6-phosphatase (G6Pase), glycogen phosphorylase (GP), and phosphoenolpyruvate carboxykinase (PEPCK) activities, adenosine triphosphate (ATP) to adenosine diphosphate (ADP) ratio, and changes in gene expressions such as glutamate dehydrogenase 1 (GLUD1), glucose transporter 2 (GLUT2), and glucokinase (GCK) in the rat liver tissue. For this purpose, styrene was dissolved in corn oil and was administered via gavage, at doses 250, 500, 1000, 1500, 2000, mg/kg/day per mL and control (corn oil) to each rat with one day off in a week, for 42 days. Plasma SOD and protein carbonyl of plasma were significantly up-regulated in 1000, 1500, and 2000 mg/kg/day styrene administrated groups (P < .001). In addition, styrene caused an increase in lipid peroxidation (LPO) and reactive oxygen species (ROS) in the dose-dependent manners in liver tissue (P < .001). Furthermore, the ferrous reducing antioxidant power (FRAP) and total thiol molecules (TTM) in styrene-treated groups were significantly decreased in liver tissue (P < .001) with increasing doses. In treated rats, styrene significantly increased G6Pase activity (P < .001) and down-regulated GP activity (P < .001) as compared to the control group. The PEPCK activity was significantly raised in a dose-dependent manner (P < .001). The ATP/ADP ratio of live cells was significantly raised by increasing the dose (P < .001). There was significantly an up-regulation of GLUD1 and GCK at 2000 mg/kg group (P < .01) and a down-regulation for GLUT2 at the same dose. While in the rest of group, GLUT2 showed up-regulation of relative fold change. By targeting genes such as GLUD1, GLUT2, and GCK, disruption of hepatic gluconeogenesis, glycogenolysis, and insulin secretory functions are obvious. The present study illustrates that induction of oxidative stress followed by changes in G6Pase, GP, and PEPCK activities and the genes responsible for glucose metabolism are the mechanisms of styrene's action in the liver.


Asunto(s)
Contaminantes Ambientales/toxicidad , Hígado/efectos de los fármacos , Estireno/toxicidad , Superóxido Dismutasa/sangre , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Regulación de la Expresión Génica , Glucosa/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Glucógeno Fosforilasa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Peroxidación de Lípido , Hígado/metabolismo , Masculino , Estrés Oxidativo , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Carbonilación Proteica , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-38771504

RESUMEN

INTRODUCTION: Curcumin is a polyphenol with a variety of pharmacological actions. Despite its therapeutic effects and well-known safety profile, the utility of curcumin has been limited due to its deprived physical, chemical, and pharmacokinetic profile resulting from limited solubility, durability, prompt deterioration and pitiable systemic availability. Employment of an amalgamated framework integrating the potential advantages of a nanoscaffold alongside the beneficial traits of inhalational drug delivery system beautifully bringing down the restricting attributes of intended curative interventions and further assures its clinical success. AREAS COVERED: Current review discussed different application of inhalable nanocurcumin in different medical conditions. Lung diseases have been the prime field in which inhalable nanocurcumin had resulted in significant beneficial effects. Apart from this several lung protective potentials of the inhaled nanocurcumin have been discussed against severe pulmonary disorders such as pulmonary fibrosis, radiation pneumonitis and IUGR induced bronchopulmonary dysplasia. Also, application of the disclosed intervention in the clinical management of COVID-19 and Alzheimer's Disease has been discussed. EXPERT OPINION: In this portion, the potential of inhalable nanocurcumin in addressing various medical conditions along with ongoing advancements in nanoencapsulation techniques and the existing challenges in transitioning from pre-clinical models to clinical practice has been summarized.

19.
Eur J Pharmacol ; 978: 176776, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38936451

RESUMEN

The use of NPS compounds is increasing, and impairment in spatial learning and memory is a growing concern. Alpha-pyrrolidinovalerophenone (α-PVP) consumption, as a commonly used NPS, can impair spatial learning and memory via the brain mitochondrial dysfunction mechanism. Liraglutide isone of the most well-known Glucagon-Like Peptide 1 (GLP-1) agonists that is used as an anti-diabetic and anti-obesity drug. According to current research, Liraglutide likely ameliorates cognitive impairment in neurodegenerative conditions and substance use disorders. Hence, the purpose of this study is examining the effect of Liraglutide on α-PVP-induced spatial learning and memory problems due to brain mitochondrial dysfunction. Wistar rats (8 in each group) received α-PVP (20 mg/kg/d for 10 consecutive days, intraperitoneally (I.P.)). Then, Liraglutide was administered at 47 and 94 µg/kg/d, I.P., for 4 weeks following the α-PVP administration. The Morris Water Maze (MWM) task evaluated spatial learning and memory 24 h after Liraglutide treatment. Bedside, brain mitochondrial activity parameters, including reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), cytochrome c release, mitochondrial outer membrane damage and swelling, and brain ADP/ATP ratio, were studied. Our results showed that Liraglutide ameliorated α-PVP-induced spatial learning and memory impairments through alleviating brain mitochondrial dysfunction (which is indicated by increasing ROS formation, collapsed MMP, mitochondrial outer membrane damage, cytochrome c release, mitochondrial swelling, and increased brain ADP/ATP ratio). This study could be used as a starting point for future studies about the possible role of Liraglutide in ameliorating mitochondrial dysfunction leading to substance use disorder- induced cognitive impairment.


Asunto(s)
Encéfalo , Disfunción Cognitiva , Liraglutida , Mitocondrias , Pirrolidinas , Ratas Wistar , Animales , Liraglutida/farmacología , Liraglutida/uso terapéutico , Pirrolidinas/farmacología , Pirrolidinas/uso terapéutico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Masculino , Ratas , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/inducido químicamente , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
20.
Toxicol Ind Health ; 29(2): 126-35, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22075688

RESUMEN

The present study was designed to determine the effect of a new (25)Mg(2+)-carrying nanoparticle ((25)MgPMC16) on energy depletion, oxidative stress, and electrocardiographic (ECG) parameters on heart tissue of the rats poisoned by aluminum phosphide (AlP). (25)MgPMC16 at doses of 0.025, 0.05, and 0.1 median lethal dose (LD50 = 896 mg/kg) was administered intravenously (iv) 30 min after a single intragastric administration of AlP (0.25 LD50). Sodium bicarbonate (Bicarb; 2 mEq/kg, iv) was used as the standard therapy. After anesthesia, the animals were rapidly connected to an electronic cardiovascular monitoring device for monitoring of ECG, blood pressure (BP), and heart rate (HR). Later lipid peroxidation, antioxidant power, ATP/ADP ratio, and Mg concentration in the heart were evaluated. Results indicated that after AlP administration, BP and HR decreased while R-R duration increased. (25)MgPMC16 significantly increased the BP and HR at all doses used. We found a considerable increase in antioxidant power, Mg level in the plasma and the heart and a reduction in lipid peroxidation and ADP/ATP ratio at various doses of (25)MgPMC16, but (25)MgPMC16-0.025 + Bicarb was the most effective combination therapy. The results of this study support that (25)MgPMC16 can increase heart energy by active transport of Mg inside the cardiac cells.(25)MgPMC16 seems ameliorating AlP-induced toxicity and cardiac failure necessitating further studies.


Asunto(s)
Compuestos de Aluminio/toxicidad , Enfermedades Cardiovasculares/tratamiento farmacológico , Sulfato de Magnesio/farmacología , Nanopartículas del Metal/administración & dosificación , Fosfinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Administración Oral , Animales , Transporte Biológico Activo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Cardiovasculares/fisiopatología , Electrocardiografía/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Corazón/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Inyecciones Intravenosas , Sulfato de Magnesio/farmacocinética , Magnetismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA