Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 77(5): 970-984.e7, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31982308

RESUMEN

Cytosolic caspase-8 is a mediator of death receptor signaling. While caspase-8 expression is lost in some tumors, it is increased in others, indicating a conditional pro-survival function of caspase-8 in cancer. Here, we show that tumor cells employ DNA-damage-induced nuclear caspase-8 to override the p53-dependent G2/M cell-cycle checkpoint. Caspase-8 is upregulated and localized to the nucleus in multiple human cancers, correlating with treatment resistance and poor clinical outcome. Depletion of caspase-8 causes G2/M arrest, stabilization of p53, and induction of p53-dependent intrinsic apoptosis in tumor cells. In the nucleus, caspase-8 cleaves and inactivates the ubiquitin-specific peptidase 28 (USP28), preventing USP28 from de-ubiquitinating and stabilizing wild-type p53. This results in de facto p53 protein loss, switching cell fate from apoptosis toward mitosis. In summary, our work identifies a non-canonical role of caspase-8 exploited by cancer cells to override the p53-dependent G2/M cell-cycle checkpoint.


Asunto(s)
Caspasa 8/metabolismo , Núcleo Celular/enzimología , Proliferación Celular , Puntos de Control de la Fase G2 del Ciclo Celular , Neoplasias/enzimología , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Antineoplásicos/farmacología , Apoptosis , Caspasa 8/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Núcleo Celular/patología , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Masculino , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Células PC-3 , Estabilidad Proteica , Transducción de Señal , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Ubiquitina Tiolesterasa/genética
2.
Proc Natl Acad Sci U S A ; 120(7): e2212909120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745811

RESUMEN

Phosphorylation is a ubiquitous mechanism by which signals are transduced in cells. Protein kinases, enzymes that catalyze the phosphotransfer reaction are, themselves, often regulated by phosphorylation. Paradoxically, however, a substantial fraction of more than 500 human protein kinases are capable of catalyzing their own activation loop phosphorylation. Commonly, these kinases perform this autophosphorylation reaction in trans, whereby transient dimerization leads to the mutual phosphorylation of the activation loop of the opposing protomer. In this study, we demonstrate that protein kinase D (PKD) is regulated by the inverse mechanism of dimerization-mediated trans-autoinhibition, followed by activation loop autophosphorylation in cis. We show that PKD forms a stable face-to-face homodimer that is incapable of either autophosphorylation or substrate phosphorylation. Dissociation of this trans-autoinhibited dimer results in activation loop autophosphorylation, which occurs exclusively in cis. Phosphorylation serves to increase PKD activity and prevent trans-autoinhibition, thereby switching PKD on. Our findings not only reveal the mechanism of PKD regulation but also have profound implications for the regulation of many other eukaryotic kinases.


Asunto(s)
Proteína Quinasa C , Humanos , Fosforilación/fisiología , Proteína Quinasa C/metabolismo
3.
Traffic ; 22(12): 454-470, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34564930

RESUMEN

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors (AMPARs) mediate the majority of fast excitatory neurotransmission in the brain. The continuous trafficking of AMPARs into and out of synapses is a core feature of synaptic plasticity, which is considered as the cellular basis of learning and memory. The molecular mechanisms underlying the postsynaptic AMPAR trafficking, however, are still not fully understood. In this work, we demonstrate that the protein kinase D (PKD) family promotes basal and activity-induced AMPAR endocytosis in primary hippocampal neurons. Pharmacological inhibition of PKD increased synaptic levels of GluA1-containing AMPARs, slowed down their endocytic trafficking and increased neuronal network activity. By contrast, ectopic expression of constitutive active PKD decreased the synaptic level of AMPARs, while increasing their colocalization with early endosomes. Our results thus establish an important role for PKD in the regulation of postsynaptic AMPAR trafficking during synaptic plasticity.


Asunto(s)
Hipocampo , Receptores AMPA , Endocitosis/fisiología , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Proteína Quinasa C , Receptores AMPA/metabolismo , Sinapsis/metabolismo
4.
EMBO J ; 36(12): 1736-1754, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28495678

RESUMEN

Sphingolipids are membrane lipids globally required for eukaryotic life. The sphingolipid content varies among endomembranes with pre- and post-Golgi compartments being poor and rich in sphingolipids, respectively. Due to this different sphingolipid content, pre- and post-Golgi membranes serve different cellular functions. The basis for maintaining distinct subcellular sphingolipid levels in the presence of membrane trafficking and metabolic fluxes is only partially understood. Here, we describe a homeostatic regulatory circuit that controls sphingolipid levels at the trans-Golgi network (TGN). Specifically, we show that sphingomyelin production at the TGN triggers a signalling pathway leading to PtdIns(4)P dephosphorylation. Since PtdIns(4)P is required for cholesterol and sphingolipid transport to the trans-Golgi network, PtdIns(4)P consumption interrupts this transport in response to excessive sphingomyelin production. Based on this evidence, we envisage a model where this homeostatic circuit maintains a constant lipid composition in the trans-Golgi network and post-Golgi compartments, thus counteracting fluctuations in the sphingolipid biosynthetic flow.


Asunto(s)
Fosfatidilinositoles/metabolismo , Esfingolípidos/metabolismo , Red trans-Golgi/metabolismo , Células HeLa , Homeostasis , Humanos , Modelos Biológicos
5.
Hepatology ; 72(5): 1717-1734, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32048304

RESUMEN

BACKGROUND AND AIMS: Liver fibrosis (LF) is a central pathological process that occurs in most types of chronic liver diseases. Advanced LF causes cirrhosis, hepatocellular carcinoma, and liver failure. However, the exact molecular mechanisms underlying the initiation and progression of LF remain largely unknown. APPROACH AND RESULTS: This study was designed to investigate the role of protein kinase D3 (PKD3; gene name Prkd3) in the regulation of liver homeostasis. We generated global Prkd3 knockout (Prkd3-/- ) mice and myeloid-cell-specific Prkd3 knockout (Prkd3∆LysM ) mice, and we found that both Prkd3-/- mice and Prkd3∆LysM mice displayed spontaneous LF. PKD3 deficiency also aggravated CCl4 -induced LF. PKD3 is highly expressed in hepatic macrophages (HMs), and PKD3 deficiency skewed macrophage polarization toward a profibrotic phenotype. Activated profibrotic macrophages produced transforming growth factor beta that, in turn, activates hepatic stellate cells to become matrix-producing myofibroblasts. Moreover, PKD3 deficiency decreased the phosphatase activity of SH2-containing protein tyrosine phosphatase-1 (a bona-fide PKD3 substrate), resulting in sustained signal transducer and activator of transcription 6 activation in macrophages. In addition, we observed that PKD3 expression in HMs was down-regulated in cirrhotic human liver tissues. CONCLUSIONS: PKD3 deletion in mice drives LF through the profibrotic macrophage activation.


Asunto(s)
Cirrosis Hepática Experimental/patología , Cirrosis Hepática/patología , Proteína Quinasa C/deficiencia , Animales , Tetracloruro de Carbono/toxicidad , Células Cultivadas , Progresión de la Enfermedad , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/citología , Hígado/patología , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/diagnóstico , Cirrosis Hepática Experimental/genética , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Miofibroblastos/metabolismo , Cultivo Primario de Células , Proteína Quinasa C/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Índice de Severidad de la Enfermedad , Análisis de Matrices Tisulares , Factor de Crecimiento Transformador beta/metabolismo
6.
Int J Cancer ; 146(12): 3423-3434, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31745977

RESUMEN

Protein kinase D3 (PKD3) is upregulated in triple-negative breast cancer (TNBC) and associated with cell proliferation and metastasis development but its precise pro-oncogenic function is unknown. Here we show that PKD3 is required for the maintenance of the TNBC stem cell population. The depletion of PKD3 in MDA-MB-231 cells reduced the cancer stem cell frequency in vitro and tumor initiation potential in vivo. We further provide evidence that the RhoGEF GEF-H1 is upstream of PKD3 activation in TNBC stem cells. Most importantly, pharmacological PKD inhibition in combination with paclitaxel synergistically decreased oncosphere and colony formation efficiency in vitro and tumor recurrence in vivo. Based on our results we propose that targeting the GEF-H1/PKD3 signaling pathway in combination with chemotherapy might provide an effective therapeutic option for TNBC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Células Madre Neoplásicas/patología , Proteína Quinasa C/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Sinergismo Farmacológico , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Biol Chem ; 293(37): 14407-14416, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30045871

RESUMEN

Many newly synthesized cellular proteins pass through the Golgi complex from where secretory transport carriers sort them to the plasma membrane and the extracellular environment. The formation of these secretory carriers at the trans-Golgi network is promoted by the protein kinase D (PKD) family of serine/threonine kinases. Here, using mathematical modeling and experimental validation of the PKD activation and substrate phosphorylation kinetics, we reveal that the expression level of the PKD substrate deleted in liver cancer 1 (DLC1), a Rho GTPase-activating protein that is inhibited by PKD-mediated phosphorylation, determines PKD activity at the Golgi membranes. RNAi-mediated depletion of DLC1 reduced PKD activity in a Rho-Rho-associated protein kinase (ROCK)-dependent manner, impaired the exocytosis of the cargo protein horseradish peroxidase, and was associated with the accumulation of the small GTPase RAB6 on Golgi membranes, indicating a protein-trafficking defect. In summary, our findings reveal that DLC1 maintains basal activation of PKD at the Golgi and Golgi secretory activity, in part by down-regulating Rho-ROCK signaling. We propose that PKD senses cytoskeletal changes downstream of DLC1 to coordinate Rho signaling with Golgi secretory function.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Red trans-Golgi/metabolismo , Línea Celular Tumoral , Activación Enzimática , Exocitosis , Proteínas Activadoras de GTPasa/genética , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Modelos Biológicos , Fosforilación , Interferencia de ARN , Transducción de Señal , Especificidad por Sustrato , Proteínas Supresoras de Tumor/genética , Proteínas de Unión al GTP rab/metabolismo , Quinasas Asociadas a rho/metabolismo
8.
J Neurochem ; 142(6): 948-961, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28722750

RESUMEN

Members of the protein kinase D (PKD) family of serine/threonine kinases are known to exert diverse roles in neuronal stress responses. Here, we show the transient activation and nuclear translocation of endogenous PKD upon oxidative stress induced by H2 O2 treatment in primary neuronal cultures. Using pharmacological inhibition, we show that PKD activity protects neurons from oxidative stress-induced cell death. Although members of the canonical nuclear factor kappa-light-chain-enhancer of activated B cells (NF kappaB) pathway were phosphorylated upon H2 O2 treatment, it was found that the neuronal response to oxidative stress is not executed through the nuclear translocation and activity of RelA. On the other hand, we demonstrate for the first time in neuronal cells, the association of green fluorescent protein-tagged kinase inactive PKD1 with mitochondrial membranes in vivo and the presence of PKD activity in the close vicinity of mitochondria in vitro. Our findings thus support the notion that the neuroprotective role of PKD is exerted independently from NF kappaB signaling and suggest a potential mitochondrial function for PKD in cultured neurons.

9.
J Cell Sci ; 128(22): 4083-95, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26459638

RESUMEN

Golgi fragmentation is a highly regulated process that allows division of the Golgi complex between the two daughter cells. The mitotic reorganization of the Golgi is accompanied by a temporary block in Golgi functioning, as protein transport in and out of the Golgi stops. Our group has previously demonstrated the involvement of the alternatively spliced variants ERK1c and MEK1b (ERK1 is also known as MAPK3, and MEK1 as MAP2K1) in mitotic Golgi fragmentation. We had also found that ERK1c translocates to the Golgi at the G2 to M phase transition, but the molecular mechanism underlying this recruitment remains unknown. In this study, we narrowed the translocation timing to prophase and prometaphase, and elucidated its molecular mechanism. We found that CDK1 phosphorylates Ser343 of ERK1c, thereby allowing the binding of phosphorylated ERK1c to a complex that consists of PI4KIIIß (also known as PI4KB) and the 14-3-3γ dimer (encoded by YWHAB). The stability of the complex is regulated by protein kinase D (PKD)-mediated phosphorylation of PI4KIIIß. The complex assembly induces the Golgi shuttling of ERK1c, where it is activated by MEK1b, and induces Golgi fragmentation. Our work shows that protein shuttling to the Golgi is not completely abolished at the G2 to M phase transition, thus integrating several independent Golgi-regulating processes into one coherent pathway.


Asunto(s)
Proteínas 14-3-3/metabolismo , Aparato de Golgi/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mitosis/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Células HeLa , Humanos , Proteína Quinasa 3 Activada por Mitógenos/genética , Multimerización de Proteína
10.
J Cell Sci ; 128(7): 1386-99, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25673874

RESUMEN

Membrane trafficking is known to be coordinated by small GTPases, but the identity of their regulators, the guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that ensure balanced GTPase activation at different subcellular sites is largely elusive. Here, we show in living cells that deleted in liver cancer 3 (DLC3, also known as STARD8) is a functional Rho-specific GAP protein, the loss of which enhances perinuclear RhoA activity. DLC3 is recruited to Rab8-positive membrane tubules and is required for the integrity of the Rab8 and Golgi compartments. Depletion of DLC3 impairs the transport of internalized transferrin to the endocytic recycling compartment (ERC), which is restored by the simultaneous downregulation of RhoA and RhoB. We further demonstrate that DLC3 loss interferes with epidermal growth factor receptor (EGFR) degradation associated with prolonged receptor signaling. Taken together, these findings identify DLC3 as a novel component of the endocytic trafficking machinery, wherein it maintains organelle integrity and regulates membrane transport through the control of Rho activity.


Asunto(s)
Endocitosis , Proteínas Activadoras de GTPasa/metabolismo , Aparato de Golgi/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas Activadoras de GTPasa/genética , Aparato de Golgi/genética , Células HeLa , Humanos , Unión Proteica , Transporte de Proteínas , Transferrina/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoB/genética , Proteína de Unión al GTP rhoB/metabolismo
11.
Metab Eng ; 40: 69-79, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28088541

RESUMEN

Chinese Hamster Ovary (CHO) cells are the most commonly used host for the production of biopharmaceuticals. Although transcription and translation engineering strategies have been employed to generate high-producer cell clones, the secretory pathway still remains a bottleneck in cellular productivity. In this study we show that ectopic expression of a human mitochondrial genome-encoded small RNA (mitosRNA-1978) in an IgG expressing CHO cell line strongly improved specific productivity by functioning in a microRNA-like fashion. By next generation sequencing we identified two endoplasmic reticulum (ER)-localized proteins, Ceramide Synthase 2 (CerS2) and the Rab1 GAP Tbc domain family member 20 (Tbc1D20), as target genes of mitosRNA-1978. Combined transient siRNA-mediated knockdown of CerS2 and Tbc1D20 resulted in increased specific productivity of CHO-IgG cells, thus recapitulating the mitosRNA-1978 phenotype. In support of a function in vesicular trafficking at the level of the ER, we provide evidence for altered cellular ceramide composition upon CerS2 knockdown and increased activity of Rab1 in CHO-IgG cells depleted of Tbc1D20. Importantly, in a fed-batch process, the combined stable knockdown of CerS2 and Tbc1D20 in CHO-IgG cells resulted in dramatically increased antibody production which was accompanied by enhanced cell growth. Thus, by identifying mitosRNA-1978 target genes in combination with an informed shRNA-mediated co-engineering approach we successfully optimized the secretory capacity of CHO producer cells used for the manufacturing of therapeutic proteins.


Asunto(s)
Mejoramiento Genético/métodos , Proteínas de la Membrana/genética , Redes y Vías Metabólicas/genética , MicroARNs/genética , ARN Interferente Pequeño/genética , Vías Secretoras/fisiología , Esfingosina N-Aciltransferasa/genética , Proteínas Supresoras de Tumor/genética , Proteínas de Unión al GTP rab1/genética , Animales , Células CHO , Cricetulus , Genoma Mitocondrial , ARN/genética , ARN Mitocondrial
12.
Biotechnol Bioeng ; 114(6): 1310-1318, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165157

RESUMEN

The dynamics of protein folding and secretion are key issues in improving the productivity and robustness of Chinese hamster ovary (CHO) producer cells. High recombinant protein secretion in CHO producer clones triggers the activation of the unfolded protein response (UPR), an intracellular response to the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER). We previously reported that the human microRNA (miRNA) miR-1287 enhances productivity in IgG-expressing CHO cells (CHO-IgG). Here, through next-generation sequencing (NGS), we identified the activating transcription factor 6 beta (ATF6ß), a repressor of the pro-survival and UPR promoting factor ATF6α, as a direct target gene of miR-1287 in CHO-IgG cells. We show that the transient depletion of ATF6ß resulted in enhanced specific productivity comparable to that of miR-1287-expressing CHO-IgG cells. Strikingly, stable ATF6ß knockdown in CHO-IgG cells significantly improved antibody titer and viable cell density under fed-batch conditions. This was associated with the elevated expression of the UPR genes glucose-regulated protein 78 (GRP78), homocysteine inducible ER protein with ubiquitin like domain 1 (Herpud1) and CCAAT/enhancer-binding protein homologous protein (CHOP). We hence demonstrate that ATF6ß-based cell line engineering is a promising strategy to improve the productivity of CHO producer cells by activating an optimally balanced UPR program. Biotechnol. Bioeng. 2017;114: 1310-1318. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Mejoramiento Genético/métodos , Proteínas Recombinantes/biosíntesis , Respuesta de Proteína Desplegada/genética , Factor de Transcripción Activador 6 , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/aislamiento & purificación , Células CHO , Cricetulus , Chaperón BiP del Retículo Endoplásmico , Proteínas Recombinantes/genética
13.
PLoS Pathog ; 10(9): e1004351, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25187968

RESUMEN

NOD1 is an intracellular pathogen recognition receptor that contributes to anti-bacterial innate immune responses, adaptive immunity and tissue homeostasis. NOD1-induced signaling relies on actin remodeling, however, the details of the connection of NOD1 and the actin cytoskeleton remained elusive. Here, we identified in a druggable-genome wide siRNA screen the cofilin phosphatase SSH1 as a specific and essential component of the NOD1 pathway. We show that depletion of SSH1 impaired pathogen induced NOD1 signaling evident from diminished NF-κB activation and cytokine release. Chemical inhibition of actin polymerization using cytochalasin D rescued the loss of SSH1. We further demonstrate that NOD1 directly interacted with SSH1 at F-actin rich sites. Finally, we show that enhanced cofilin activity is intimately linked to NOD1 signaling. Our data thus provide evidence that NOD1 requires the SSH1/cofilin network for signaling and to detect bacterial induced changes in actin dynamics leading to NF-κB activation and innate immune responses.


Asunto(s)
Actinas/metabolismo , Cofilina 1/metabolismo , Disentería Bacilar/microbiología , Proteína Adaptadora de Señalización NOD1/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Shigella flexneri/fisiología , Actinas/química , Western Blotting , Células Cultivadas , Cofilina 1/genética , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente Indirecta , Regulación de la Expresión Génica , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Inflamación , Mediadores de Inflamación/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína Adaptadora de Señalización NOD1/antagonistas & inhibidores , Proteína Adaptadora de Señalización NOD1/genética , Fosfoproteínas Fosfatasas/genética , Fosforilación , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
14.
J Biol Chem ; 289(6): 3138-47, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24337579

RESUMEN

Here, we show that the expression of the Golgi-localized serine-threonine kinase protein kinase D3 (PKD3) is elevated in triple-negative breast cancer (TNBC). Using an antibody array, we identified PKD3 to trigger the activation of S6 kinase 1 (S6K1), a main downstream target of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. Accordingly, PKD3 knockdown in TNBC cells led to reduced S6K1 phosphorylation, which was associated with impaired activation of mTORC1 at endolysosomal membranes, the accumulation of the mannose 6-phosphate receptor in and the recruitment of the autophagy marker light chain 3 to enlarged acidic vesicles. We further show that PKD3 depletion strongly inhibited cell spreading and proliferation of TNBC cells, identifying this kinase as a potential novel molecular therapeutic target in TNBC. Together, our data suggest that PKD3 in TNBC cells provides a molecular connection between the Golgi and endolysosomal compartments to enhance proliferative mTORC1-S6K1 signaling.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proliferación Celular , Complejos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína Quinasa C/biosíntesis , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Endosomas/genética , Endosomas/metabolismo , Endosomas/patología , Femenino , Técnicas de Silenciamiento del Gen , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/genética , Proteínas de Neoplasias/genética , Proteína Quinasa C/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Serina-Treonina Quinasas TOR/genética
15.
Cytometry A ; 87(1): 89-96, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25257846

RESUMEN

Dendritic filopodia are tiny and highly motile protrusions formed along the dendrites of neurons. During the search for future presynaptic partners, their shape and size change dynamically, with a direct impact on the formation, stabilization and maintenance of synaptic connections both in vivo and in vitro. In order to reveal molecular players regulating synapse formation, quantitative analysis of dendritic filopodia motility is needed. Defining the length or the tips of these protrusions manually, however, is time consuming, limiting the extent of studies as well as their statistical power. Additionally, area detection based on defining a single intensity threshold can lead to significant errors throughout the image series, as these small structures often have low contrast in fluorescent images. To overcome these problems, the open access Dendritic Filopodia Motility Analyzer, a semi-automated ImageJ/Fiji plugin was created. Our method calculates the displacement of the centre of mass (CoM) within a selected region based on the weighted intensity values of structure forming pixels, selected by upper and lower intensity thresholds. Using synthetic and real biological samples, we prove that the displacement of the weighted CoM reliably characterizes the motility of dendritic protrusions. Additionally, guidelines to define optimal parameters of live cell recordings from dendritic protrusions are provided. © 2014 International Society for Advancement of Cytometry.


Asunto(s)
Citofotometría/instrumentación , Dendritas/ultraestructura , Seudópodos/ultraestructura , Sinapsis/ultraestructura , Imagen de Lapso de Tiempo/instrumentación , Animales , Movimiento Celular , Citofotometría/métodos , Dendritas/metabolismo , Embrión de Mamíferos , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/metabolismo , Hipocampo/ultraestructura , Procesamiento de Imagen Asistido por Computador , Ratones , Cultivo Primario de Células , Seudópodos/metabolismo , Sinapsis/metabolismo , Imagen de Lapso de Tiempo/métodos
16.
Mol Cell Proteomics ; 11(5): 160-70, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22496350

RESUMEN

Protein kinase D (PKD) is a cytosolic serine/threonine kinase implicated in regulation of several cellular processes such as response to oxidative stress, directed cell migration, invasion, differentiation, and fission of the vesicles at the trans-Golgi network. Its variety of functions must be mediated by numerous substrates; however, only a couple of PKD substrates have been identified so far. Here we perform stable isotope labeling of amino acids in cell culture-based quantitative phosphoproteomic analysis to detect phosphorylation events dependent on PKD1 activity in human cells. We compare relative phosphorylation levels between constitutively active and kinase dead PKD1 strains of HEK293 cells, both treated with nocodazole, a microtubule-depolymerizing reagent that disrupts the Golgi complex and activates PKD1. We identify 124 phosphorylation sites that are significantly down-regulated upon decrease of PKD1 activity and show that the PKD target motif is significantly enriched among down-regulated phosphorylation events, pointing to the presence of direct PKD1 substrates. We further perform PKD1 target motif analysis, showing that a proline residue at position +1 relative to the phosphorylation site serves as an inhibitory cue for PKD1 activity. Among PKD1-dependent phosphorylation events, we detect predominantly proteins with localization at Golgi membranes and function in protein sorting, among them several sorting nexins and members of the insulin-like growth factor 2 receptor pathway. This study presents the first global detection of PKD1-dependent phosphorylation events and provides a wealth of information for functional follow-up of PKD1 activity upon disruption of the Golgi network in human cells.


Asunto(s)
Nocodazol/farmacología , Fosfoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Canales Catiónicos TRPP/metabolismo , Moduladores de Tubulina/farmacología , Secuencias de Aminoácidos , Activación Enzimática , Técnicas de Silenciamiento del Gen , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/enzimología , Células HEK293 , Humanos , Fosforilación , Canales Catiónicos TRPP/genética
17.
iScience ; 27(2): 108958, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38323010

RESUMEN

The protein kinase D (PKD) family members regulate the fission of cargo vesicles at the Golgi complex and play a pro-oncogenic role in triple-negative breast cancer (TNBC). Whether PKD facilitates the secretion of tumor-promoting factors in TNBC, however, is still unknown. Using the pharmacological inhibition of PKD activity and siRNA-mediated depletion of PKD2 and PKD3, we identified the PKD-dependent secretome of the TNBC cell lines MDA-MB-231 and MDA-MB-468. Mass spectrometry-based proteomics and antibody-based assays revealed a significant downregulation of extracellular matrix related proteins and pro-invasive factors such as LIF, MMP-1, MMP-13, IL-11, M-CSF and GM-CSF in PKD-perturbed cells. Notably, secretion of these proteins in MDA-MB-231 cells was predominantly controlled by PKD2 and enhanced spheroid invasion. Consistently, PKD-dependent secretion of pro-invasive factors was more pronounced in metastatic TNBC cell lines. Our study thus uncovers a novel role of PKD2 in releasing a pro-invasive secretome.

18.
J Biol Chem ; 287(41): 34604-13, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22893698

RESUMEN

The continuous assembly and disassembly of focal adhesions is required for efficient cell spreading and migration. The G-protein-coupled receptor kinase-interacting protein 1 (GIT1) is a multidomain protein whose dynamic localization to sites of cytoskeletal remodeling is critically involved in the regulation of these processes. Here we provide evidence that the subcellular localization of GIT1 is regulated by protein kinase D3 (PKD3) through direct phosphorylation on serine 46. GIT1 phosphorylation on serine 46 was abrograted by PKD3 depletion, thereby identifying GIT1 as the first specific substrate for this kinase. A GIT1 S46D phosphomimetic mutant localized to motile, paxillin-positive cytoplasmic complexes, whereas the phosphorylation-deficient GIT1 S46A was enriched in focal adhesions. We propose that phosphorylation of GIT1 on serine 46 by PKD3 represents a molecular switch by which GIT1 localization, paxillin trafficking, and cellular protrusive activity are regulated.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular/fisiología , Citoesqueleto/metabolismo , Paxillin/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Sustitución de Aminoácidos , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Citoesqueleto/genética , Células HEK293 , Humanos , Mutación Missense , Paxillin/genética , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas/fisiología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Serina/genética , Serina/metabolismo
19.
Biochim Biophys Acta ; 1821(8): 1096-103, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22226883

RESUMEN

Non-vesicular transport of ceramide from endoplasmic reticulum to Golgi membranes is essential for cellular lipid homeostasis. Protein kinase D (PKD) is a serine-threonine kinase that controls vesicle fission at Golgi membranes. Here we highlight the intimate connections between non-vesicular and vesicular transport at the level of the Golgi complex, and suggest that PKD and its substrate CERT, the ceramide transfer protein, play central roles in coordinating these processes by fine-tuning the local membrane lipid composition to maintain Golgi secretory function. This article is part of a Special Issue entitled Lipids and Vesicular Transport.


Asunto(s)
Ceramidas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Transporte Biológico , Humanos , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Estructura Terciaria de Proteína , Transducción de Señal
20.
IUBMB Life ; 65(2): 98-107, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23288632

RESUMEN

The cellular functions of the serine/threonine protein kinase D (PKD) have been extensively studied within the last decade and distinct roles such as fission of vesicles at the Golgi compartment, coordination of cell migration and invasion, and regulation of gene transcription have been correlated with this kinase family. Here, we highlight the current state of in vivo studies on PKD function with a focus on animal models and discuss the molecular basis of the observed phenotypic characteristics associated with this kinase family.


Asunto(s)
Proteína Quinasa C/fisiología , Secuencias de Aminoácidos , Animales , Animales Modificados Genéticamente , Dominio Catalítico , Crecimiento y Desarrollo , Humanos , Isoenzimas/fisiología , Especificidad de Órganos , Fosforilación , Proteína Quinasa C/química , Procesamiento Proteico-Postraduccional , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA