Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Genet ; 19(11): e1011061, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38032985

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1004747.].

2.
Proc Natl Acad Sci U S A ; 119(49): e2210766119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442093

RESUMEN

Transient soluble oligomers of amyloid-ß (Aß) are toxic and accumulate early prior to insoluble plaque formation and cognitive impairment in Alzheimer's disease (AD). Synthetic cyclic D,L-α-peptides (e.g., 1) self-assemble into cross ß-sheet nanotubes, react with early Aß species (1-3 mers), and inhibit Aß aggregation and toxicity in stoichiometric concentrations, in vitro. Employing a semicarbazide as an aza-glycine residue with an extra hydrogen-bond donor to tune nanotube assembly and amyloid engagement, [azaGly6]-1 inhibited Aß aggregation and toxicity at substoichiometric concentrations. High-resolution NMR studies revealed dynamic interactions between [azaGly6]-1 and Aß42 residues F19 and F20, which are pivotal for early dimerization and aggregation. In an AD mouse model, brain positron emission tomography (PET) imaging using stable 64Cu-labeled (aza)peptide tracers gave unprecedented early amyloid detection in 44-d presymptomatic animals. No tracer accumulation was detected in the cortex and hippocampus of 44-d-old 5xFAD mice; instead, intense PET signal was observed in the thalamus, from where Aß oligomers may spread to other brain parts with disease progression. Compared with standard 11C-labeled Pittsburgh compound-B (11C-PIB), which binds specifically fibrillar Aß plaques, 64Cu-labeled (aza)peptide gave superior contrast and uptake in young mouse brain correlating with Aß oligomer levels. Effectively crossing the blood-brain barrier (BBB), peptide 1 and [azaGly6]-1 reduced Aß oligomer levels, prolonged lifespan of AD transgenic Caenorhabditis elegans, and abated memory and behavioral deficits in nematode and murine AD models. Cyclic (aza)peptides offer novel promise for early AD diagnosis and therapy.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Animales , Ratones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Diagnóstico Precoz , Péptidos beta-Amiloides , Placa Amiloide , Proteínas Amiloidogénicas
3.
PLoS Genet ; 13(2): e1006577, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28196094

RESUMEN

In C. elegans, removal of the germline triggers molecular events in the neighboring intestine, which sends an anti-aging signal to the rest of the animal. In this study, we identified an innate immunity related gene, named irg-7, as a novel mediator of longevity in germlineless animals. We consider irg-7 to be an integral downstream component of the germline longevity pathway because its expression increases upon germ cell removal and its depletion interferes with the activation of the longevity-promoting transcription factors DAF-16 and DAF-12 in germlineless animals. Furthermore, irg-7 activation by itself sensitizes the animals' innate immune response and extends the lifespan of animals exposed to live bacteria. This lifespan-extending pathogen resistance relies on the somatic gonad as well as on many genes previously associated with the reproductive longevity pathway. This suggests that these genes are also relevant in animals with an intact gonad, and can affect their resistance to pathogens. Altogether, this study demonstrates the tight association between germline homeostasis and the immune response of animals, and raises the possibility that the reproductive system can act as a signaling center to divert resources towards defending against putative pathogen attacks.


Asunto(s)
Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/genética , Factores de Transcripción Forkhead/biosíntesis , Inmunidad Innata/genética , Lectinas Tipo C/genética , Longevidad/genética , Receptores Citoplasmáticos y Nucleares/biosíntesis , Envejecimiento/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/inmunología , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/crecimiento & desarrollo , Gónadas/crecimiento & desarrollo , Gónadas/metabolismo , Mutación , Receptores Citoplasmáticos y Nucleares/genética , Reproducción/genética , Transducción de Señal
4.
PLoS Genet ; 10(10): e1004747, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25340700

RESUMEN

The C. elegans germline is pluripotent and mitotic, similar to self-renewing mammalian tissues. Apoptosis is triggered as part of the normal oogenesis program, and is increased in response to various stresses. Here, we examined the effect of endoplasmic reticulum (ER) stress on apoptosis in the C. elegans germline. We demonstrate that pharmacological or genetic induction of ER stress enhances germline apoptosis. This process is mediated by the ER stress response sensor IRE-1, but is independent of its canonical downstream target XBP-1. We further demonstrate that ire-1-dependent apoptosis in the germline requires both CEP-1/p53 and the same canonical apoptotic genes as DNA damage-induced germline apoptosis. Strikingly, we find that activation of ire-1, specifically in the ASI neurons, but not in germ cells, is sufficient to induce apoptosis in the germline. This implies that ER stress related germline apoptosis can be determined at the organism level, and is a result of active IRE-1 signaling in neurons. Altogether, our findings uncover ire-1 as a novel cell non-autonomous regulator of germ cell apoptosis, linking ER homeostasis in sensory neurons and germ cell fate.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular/genética , Neuronas/citología , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Animales , Apoptosis/genética , Caenorhabditis elegans , Proteínas Portadoras/genética , Daño del ADN/genética , Estrés del Retículo Endoplásmico/genética , Células Germinativas/crecimiento & desarrollo , Gónadas/crecimiento & desarrollo
6.
Nucleic Acids Res ; 35(15): 5192-202, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17670800

RESUMEN

Double-strand breaks (DSBs) are dangerous chromosomal lesions that must be efficiently repaired in order to avoid loss of genetic information or cell death. In all organisms studied to date, two different mechanisms are used to repair DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ). Previous studies have shown that during DSB repair, non-homologous exogenous DNA (also termed 'filler DNA') can be incorporated at the site of a DSB. We have created a genetic system in the yeast Saccharomyces cerevisiae to study the mechanism of fragment capture. Our yeast strains carry recognition sites for the HO endonuclease at a unique chromosomal site, and plasmids in which a LEU2 gene is flanked by HO cut sites. Upon induction of the HO endonuclease, a linear extrachromosomal fragment is generated in each cell and its incorporation at the chromosomal DSB site can be genetically monitored. Our results show that linear fragments are captured at the repaired DSB site at frequencies of 10(-6) to 10(-4) per plated cell depending on strain background and specific end sequences. The mechanism of fragment capture depends on the NHEJ machinery, but only partially on the homologous recombination proteins. More than one fragment can be used during repair, by a mechanism that relies on the annealing of small complementary sequences. We present a model to explain the basis for fragment capture.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Saccharomyces cerevisiae/genética , ADN de Hongos/química , ADN de Hongos/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Plásmidos/genética , Proteínas de Saccharomyces cerevisiae
7.
Cell Metab ; 20(5): 870-881, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25448701

RESUMEN

The unfolded protein response (UPR) allows cells to adjust the capacity of the endoplasmic reticulum (ER) to the load of ER-associated tasks. We show that activation of the Caenorhabditis elegans transcription factor DAF-16 and its human homolog FOXO3 restore secretory protein metabolism when the UPR is dysfunctional.We show that DAF-16 establishes alternative ER-associated degradation systems that degrade misfolded proteins independently of the ER stress sensor ire-1 and the ER-associated E3 ubiquitin ligase complex sel-11/sel-1. This is achieved by enabling autophagy-mediated degradation and by increasing the levels of skr-5, a component of an ER associated ubiquitin ligase complex. These degradation systems can act together with the conserved UPR to improve ER homeostasis and ER stress resistance, beyond wild-type levels. Because there is no sensor in the ER that activates DAF-16 in response to intrinsic ER stress, natural or artificial interventions that activate DAF-16 may be useful therapeutic approaches to maintain ER homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Factores de Transcripción Forkhead/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Autofagia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Estrés del Retículo Endoplásmico , Proteína Forkhead Box O3 , Células HEK293 , Humanos , Mutación , Proteínas Serina-Treonina Quinasas/genética , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA