Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 598(7879): 103-110, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616066

RESUMEN

Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain1-3. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas-containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities-is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis.


Asunto(s)
Epigenómica , Perfilación de la Expresión Génica , Corteza Motora/citología , Neuronas/clasificación , Análisis de la Célula Individual , Transcriptoma , Animales , Atlas como Asunto , Conjuntos de Datos como Asunto , Epigénesis Genética , Femenino , Masculino , Ratones , Corteza Motora/anatomía & histología , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos , Reproducibilidad de los Resultados
2.
BMC Genomics ; 15: 154, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24564186

RESUMEN

BACKGROUND: High-throughput sequencing is gradually replacing microarrays as the preferred method for studying mRNA expression levels, providing nucleotide resolution and accurately measuring absolute expression levels of almost any transcript, known or novel. However, existing microarray data from clinical, pharmaceutical, and academic settings represent valuable and often underappreciated resources, and methods for assessing and improving the quality of these data are lacking. RESULTS: To quantitatively assess the quality of microarray probes, we directly compare RNA-Seq to Agilent microarrays by processing 231 unique samples from the Allen Human Brain Atlas using RNA-Seq. Both techniques provide highly consistent, highly reproducible gene expression measurements in adult human brain, with RNA-Seq slightly outperforming microarray results overall. We show that RNA-Seq can be used as ground truth to assess the reliability of most microarray probes, remove probes with off-target effects, and scale probe intensities to match the expression levels identified by RNA-Seq. These sequencing scaled microarray intensities (SSMIs) provide more reliable, quantitative estimates of absolute expression levels for many genes when compared with unscaled intensities. Finally, we validate this result in two human cell lines, showing that linear scaling factors can be applied across experiments using the same microarray platform. CONCLUSIONS: Microarrays provide consistent, reproducible gene expression measurements, which are improved using RNA-Seq as ground truth. We expect that our strategy could be used to improve probe quality for many data sets from major existing repositories.


Asunto(s)
Encéfalo/metabolismo , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia de ARN/métodos , Análisis por Conglomerados , Biología Computacional/métodos , Expresión Génica , Perfilación de la Expresión Génica/normas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neocórtex/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/normas , Transcriptoma
3.
bioRxiv ; 2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38168270

RESUMEN

The mammalian brain is composed of diverse neuron types that play different functional roles. Recent single-cell RNA sequencing approaches have led to a whole brain taxonomy of transcriptomically-defined cell types, yet cell type definitions that include multiple cellular properties can offer additional insights into a neuron's role in brain circuits. While the Patch-seq method can investigate how transcriptomic properties relate to the local morphological and electrophysiological properties of cell types, linking transcriptomic identities to long-range projections is a major unresolved challenge. To address this, we collected coordinated Patch-seq and whole brain morphology data sets of excitatory neurons in mouse visual cortex. From the Patch-seq data, we defined 16 integrated morpho-electric-transcriptomic (MET)-types; in parallel, we reconstructed the complete morphologies of 300 neurons. We unified the two data sets with a multi-step classifier, to integrate cell type assignments and interrogate cross-modality relationships. We find that transcriptomic variations within and across MET-types correspond with morphological and electrophysiological phenotypes. In addition, this variation, along with the anatomical location of the cell, can be used to predict the projection targets of individual neurons. We also shed new light on infragranular cell types and circuits, including cell-type-specific, interhemispheric projections. With this approach, we establish a comprehensive, integrated taxonomy of excitatory neuron types in mouse visual cortex and create a system for integrated, high-dimensional cell type classification that can be extended to the whole brain and potentially across species.

5.
Methods ; 50(2): 113-21, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19800006

RESUMEN

Although cytoarchitectonic organization of the mammalian cortex into different lamina has been well-studied, identifying the architectural differences that distinguish cortical areas from one another is more challenging. Localization of large anatomical structures is possible using magnetic resonance imaging or invasive techniques (such as anterograde or retrograde tracing), but identifying patterns in gene expression architecture is limited as gene products do not necessarily identify an immediate functional consequence of a specialized area. Expression of specific genes in the mouse and human cortex is most often identified across entire lamina, and areal patterning of expression (when it exists) is most easily differentiated on a layer-by-layer basis. Since cortical organization is defined by the expression of large sets of genes, the task of identifying individual (or groups of structures) cannot be done using individual areal markers. In this manuscript we describe a methodology for clustering gene expression correlation profiles in the C57Bl/6J mouse cortex to identify large-scale genetic relationships between layers and areas. By using the Anatomic Gene Expression Atlas (http://mouse.brain-map.org/agea/) derived from in situ hybridization data in the Allen Brain Atlas, we show that a consistent expression based organization of areal patterning in the mouse cortex exists when clustered on a laminar basis. Surface-based mapping and visualization techniques are used as a representation to clarify these relationships.


Asunto(s)
Mapeo Encefálico/métodos , Perfilación de la Expresión Génica/métodos , Neocórtex/metabolismo , Animales , Encéfalo/metabolismo , Diferenciación Celular , Análisis por Conglomerados , Expresión Génica , Humanos , Procesamiento de Imagen Asistido por Computador , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Probabilidad
7.
BMC Bioinformatics ; 9: 153, 2008 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-18366675

RESUMEN

BACKGROUND: Spatially mapped large scale gene expression databases enable quantitative comparison of data measurements across genes, anatomy, and phenotype. In most ongoing efforts to study gene expression in the mammalian brain, significant resources are applied to the mapping and visualization of data. This paper describes the implementation and utility of Brain Explorer, a 3D visualization tool for studying in situ hybridization-based (ISH) expression patterns in the Allen Brain Atlas, a genome-wide survey of 21,000 expression patterns in the C57BL\6J adult mouse brain. RESULTS: Brain Explorer enables users to visualize gene expression data from the C57Bl/6J mouse brain in 3D at a resolution of 100 microm3, allowing co-display of several experiments as well as 179 reference neuro-anatomical structures. Brain Explorer also allows viewing of the original ISH images referenced from any point in a 3D data set. Anatomic and spatial homology searches can be performed from the application to find data sets with expression in specific structures and with similar expression patterns. This latter feature allows for anatomy independent queries and genome wide expression correlation studies. CONCLUSION: These tools offer convenient access to detailed expression information in the adult mouse brain and the ability to perform data mining and visualization of gene expression and neuroanatomy in an integrated manner.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/metabolismo , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Programas Informáticos , Interfaz Usuario-Computador , Animales , Gráficos por Computador , Simulación por Computador , Expresión Génica/fisiología , Perfilación de la Expresión Génica/métodos , Ratones , Ratones Endogámicos C57BL , Modelos Anatómicos , Distribución Tisular
8.
Transl Psychiatry ; 8(1): 109, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844452

RESUMEN

Neurodevelopmental disorders, such as ASD and ADHD, affect males about three to four times more often than females. 16p11.2 hemideletion is a copy number variation that is highly associated with neurodevelopmental disorders. Previous work from our lab has shown that a mouse model of 16p11.2 hemideletion (del/+) exhibits male-specific behavioral phenotypes. We, therefore, aimed to investigate with magnetic resonance imaging (MRI), whether del/+ animals also exhibited a sex-specific neuroanatomical endophenotype. Using the Allen Mouse Brain Atlas, we analyzed the expression patterns of the 27 genes within the 16p11.2 region to identify which gene expression patterns spatially overlapped with brain structural changes. MRI was performed ex vivo and the resulting images were analyzed using Voxel-based morphometry for T1-weighted sequences and tract-based spatial statistics for diffusion-weighted images. In a subsequent step, all available in situ hybridization (ISH) maps of the genes involved in the 16p11.2 hemideletion were aligned to Waxholm space and clusters obtained by sex-specific group comparisons were analyzed to determine which gene(s) showed the highest expression in these regions. We found pronounced sex-specific changes in male animals with increased fractional anisotropy in medial fiber tracts, especially in those proximate to the striatum. Moreover, we were able to identify gene expression patterns spatially overlapping with male-specific structural changes that were associated with neurite outgrowth and the MAPK pathway. Of note, previous molecular studies have found convergent changes that point to a sex-specific dysregulation of MAPK signaling. This convergent evidence supports the idea that ISH maps can be used to meaningfully analyze imaging data sets.


Asunto(s)
Deleción Cromosómica , Variaciones en el Número de Copia de ADN , Expresión Génica , Sustancia Gris/patología , Animales , Trastorno Autístico/genética , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 16/genética , Imagen de Difusión por Resonancia Magnética , Modelos Animales de Enfermedad , Femenino , Humanos , Hibridación in Situ , Discapacidad Intelectual/genética , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trastornos del Neurodesarrollo/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-17666758

RESUMEN

Large scale gene expression studies in the mammalian brain offer the promise of understanding the topology, networks and ultimately the function of its complex anatomy, opening previously unexplored avenues in neuroscience. High-throughput methods permit genome-wide searches to discover genes that are uniquely expressed in brain circuits and regions that control behavior. Previous gene expression mapping studies in model organisms have employed situ hybridization (ISH), a technique that uses labeled nucleic acid probes to bind to specific mRNA transcripts in tissue sections. A key requirement for this effort is the development of fast and robust algorithms for anatomically mapping and quantifying gene expression for ISH. We describe a neuroinformatics pipeline for automatically mapping expression profiles of ISH data and its use to produce the first genomic scale 3-D mapping of gene expression in a mammalian brain. The pipeline is fully automated and adaptable to other organisms and tissues. Our automated study of over 20,000 genes indicates that at least 78.8 percent are expressed at some level in the adult C56BL/6J mouse brain. In addition to providing a platform for genomic scale search, high-resolution images and visualization tools for expression analysis are available at the Allen Brain Atlas web site (http://www.brain-map.org).


Asunto(s)
Algoritmos , Encéfalo/metabolismo , Perfilación de la Expresión Génica/métodos , Imagenología Tridimensional/métodos , Hibridación Fluorescente in Situ/métodos , Microscopía Fluorescente/métodos , Proteínas del Tejido Nervioso/metabolismo , Animales , Mapeo Cromosómico/métodos , Biología Computacional/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Neurociencias/métodos
11.
Science ; 348(6240): 1241-4, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-26068849

RESUMEN

During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function.


Asunto(s)
Encéfalo/fisiología , Canales Iónicos/genética , Red Nerviosa/fisiología , Descanso/fisiología , Transcriptoma , Adolescente , Adulto , Animales , Encéfalo/metabolismo , Femenino , Expresión Génica , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Red Nerviosa/metabolismo , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Polimorfismo Genético , Sinapsis/metabolismo , Sinapsis/fisiología , Adulto Joven
12.
Neural Netw ; 24(9): 933-42, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21764550

RESUMEN

The mammalian brain is best understood as a multi-scale hierarchical neural system, in the sense that connection and function occur on multiple scales from micro to macro. Modern genomic-scale expression profiling can provide insight into methodologies that elucidate this architecture. We present a methodology for understanding the relationship of gene expression and neuroanatomy based on correlation between gene expression profiles across tissue samples. A resulting tool, NeuroBlast, can identify networks of genes co-expressed within or across neuroanatomic structures. The method applies to any data modality that can be mapped with sufficient spatial resolution, and provides a computation technique to elucidate neuroanatomy via patterns of gene expression on spatial and temporal scales. In addition, from the perspective of spatial location, we discuss a complementary technique that identifies gene classes that contribute to defining anatomic patterns.


Asunto(s)
Algoritmos , Química Encefálica/genética , Encéfalo/fisiología , Minería de Datos/métodos , Expresión Génica/fisiología , Animales , Atlas como Asunto , Encéfalo/anatomía & histología , Bases de Datos Genéticas , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA