Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ecol Lett ; 27(6): e14447, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38844351

RESUMEN

Host specialization plays a critical role in the ecology and evolution of plant-microbe symbiosis. Theory predicts that host specialization is associated with microbial genome streamlining and is influenced by the abundance of host species, both of which can vary across latitudes, leading to a latitudinal gradient in host specificity. Here, we quantified the host specificity and composition of plant-bacteria symbioses on leaves across 329 tree species spanning a latitudinal gradient. Our analysis revealed a predominance of host-specialized leaf bacteria. The degree of host specificity was negatively correlated with bacterial genome size and the local abundance of host plants. Additionally, we found an increased host specificity at lower latitudes, aligning with the high prevalence of small bacterial genomes and rare host species in the tropics. These findings underscore the importance of genome streamlining and host abundance in the evolution of host specificity in plant-associated bacteria along the latitudinal gradient.


Asunto(s)
Tamaño del Genoma , Especificidad del Huésped , Hojas de la Planta , Simbiosis , Hojas de la Planta/microbiología , Bacterias/genética , Bacterias/clasificación , Genoma Bacteriano , Árboles/microbiología
2.
Ecol Lett ; 26(5): 765-777, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36958933

RESUMEN

Forest soil CO2 efflux (FCO2 ) is a crucial process in global carbon cycling; however, how FCO2 responds to disturbance regimes in different forest biomes is poorly understood. We quantified the effects of disturbance regimes on FCO2 across boreal, temperate, tropical and Mediterranean forests based on 1240 observations from 380 studies. Globally, climatic perturbations such as elevated CO2 concentration, warming and increased precipitation increase FCO2 by 13% to 25%. FCO2 is increased by forest conversion to grassland and elevated carbon input by forest management practices but reduced by decreased carbon input, fire and acid rain. Disturbance also changes soil temperature and water content, which in turn affect the direction and magnitude of disturbance influences on FCO2 . FCO2 is disturbance- and biome-type dependent and such effects should be incorporated into earth system models to improve the projection of the feedback between the terrestrial C cycle and climate change.


Asunto(s)
Dióxido de Carbono , Suelo , Bosques , Ecosistema , Carbono
3.
New Phytol ; 240(4): 1534-1547, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37649282

RESUMEN

Predicting and managing the structure and function of plant microbiomes requires quantitative understanding of community assembly and predictive models of spatial distributions at broad geographic scales. Here, we quantified the relative contribution of abiotic and biotic factors to the assembly of phyllosphere bacterial communities, and developed spatial distribution models for keystone bacterial taxa along a latitudinal gradient, by analyzing 16S rRNA gene sequences from 1453 leaf samples taken from 329 plant species in China. We demonstrated a latitudinal gradient in phyllosphere bacterial diversity and community composition, which was mostly explained by climate and host plant factors. We found that host-related factors were increasingly important in explaining bacterial assembly at higher latitudes while nonhost factors including abiotic environments, spatial proximity and plant neighbors were more important at lower latitudes. We further showed that local plant-bacteria associations were interconnected by hub bacteria taxa to form metacommunity-level networks, and the spatial distribution of these hub taxa was controlled by hosts and spatial factors with varying importance across latitudes. For the first time, we documented a latitude-dependent importance in the driving factors of phyllosphere bacteria assembly and distribution, serving as a baseline for predicting future changes in plant phyllosphere microbiomes under global change and human activities.


Asunto(s)
Bacterias , Microbiota , Humanos , ARN Ribosómico 16S/genética , Bacterias/genética , Plantas/genética , Hojas de la Planta/microbiología
4.
Ecol Lett ; 25(12): 2584-2596, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36310402

RESUMEN

Positive interactions have been hypothesised to influence plant community dynamics and species invasions. However, their prevalence and importance relative to negative interactions remain unclear to understand community change and invasibility. We examined pairwise biotic interactions using over 50 years of successional data to assess the prevalence of positive interactions and their effects on each focal species (either native or exotic). We found that positive interactions were widespread and the relative frequency of positive and negative interactions varied with establishment stage and between native and exotic species. Specifically, positive interactions were more frequent during early establishment and less frequent at later stages. Positive interactions involving native species were more frequent and stronger than those between exotic species, reducing the importance of invasional meltdown on succession. Our study highlights the role of positive native interactions in shielding communities from biological invasion and enhancing the potential for long-term resilience.


Asunto(s)
Ecosistema , Plantas , Especies Introducidas
5.
Ecol Lett ; 25(7): 1676-1689, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35598109

RESUMEN

Demographic compensation-the opposing responses of vital rates along environmental gradients-potentially delays anticipated species' range contraction under climate change, but no consensus exists on its actual contribution. We calculated population growth rate (λ) and demographic compensation across the distributional ranges of 81 North American tree species and examined their responses to simulated warming and tree competition. We found that 43% of species showed stable population size at both northern and southern edges. Demographic compensation was detected in 25 species, yet 15 of them still showed a potential retraction from southern edges, indicating that compensation alone cannot maintain range stability. Simulated climatic warming caused larger decreases in λ for most species and weakened the effectiveness of demographic compensation in stabilising ranges. These findings suggest that climate stress may surpass the limited capacity of demographic compensation and pose a threat to the viability of North American tree populations.


Asunto(s)
Cambio Climático , Árboles , América del Norte , Dinámica Poblacional , Crecimiento Demográfico
6.
PLoS Comput Biol ; 17(4): e1008853, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33914731

RESUMEN

When Darwin visited the Galapagos archipelago, he observed that, in spite of the islands' physical similarity, members of species that had dispersed to them recently were beginning to diverge from each other. He postulated that these divergences must have resulted primarily from interactions with sets of other species that had also diverged across these otherwise similar islands. By extrapolation, if Darwin is correct, such complex interactions must be driving species divergences across all ecosystems. However, many current general ecological theories that predict observed distributions of species in ecosystems do not take the details of between-species interactions into account. Here we quantify, in sixteen forest diversity plots (FDPs) worldwide, highly significant negative density-dependent (NDD) components of both conspecific and heterospecific between-tree interactions that affect the trees' distributions, growth, recruitment, and mortality. These interactions decline smoothly in significance with increasing physical distance between trees. They also tend to decline in significance with increasing phylogenetic distance between the trees, but each FDP exhibits its own unique pattern of exceptions to this overall decline. Unique patterns of between-species interactions in ecosystems, of the general type that Darwin postulated, are likely to have contributed to the exceptions. We test the power of our null-model method by using a deliberately modified data set, and show that the method easily identifies the modifications. We examine how some of the exceptions, at the Wind River (USA) FDP, reveal new details of a known allelopathic effect of one of the Wind River gymnosperm species. Finally, we explore how similar analyses can be used to investigate details of many types of interactions in these complex ecosystems, and can provide clues to the evolution of these interactions.


Asunto(s)
Evolución Biológica , Bosques , Árboles , Análisis por Conglomerados , Fenómenos Ecológicos y Ambientales , Modelos Biológicos , Filogenia
7.
Ann Bot ; 129(5): 583-592, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35136940

RESUMEN

BACKGROUND AND AIMS: Nitrogen is often regarded as a limiting factor to plant growth in various ecosystems. Understanding how nitrogen drives plant growth has numerous theoretical and practical applications in agriculture and ecology. In 2004, Göran I. Ågren proposed a mechanistic model of plant growth from a biochemical perspective. However, neglecting respiration and assuming stable and balanced growth made the model unrealistic for plants growing in natural conditions. The aim of the present paper is to extend Ågren's model to overcome these limitations. METHODS: We improved Ågren's model by incorporating the respiratory process and replacing the stable and balanced growth assumption with a three-parameter power function to describe the relationship between nitrogen concentration (Nc) and biomass. The new model was evaluated based on published data from three studies on corn (Zea mays) growth. KEY RESULTS: Remarkably, the mechanistic growth model derived in this study is mathematically equivalent to the classical Richards model, which is the most widely used empirical growth model. The model agrees well with empirical plant growth data. CONCLUSIONS: Our model provides a mechanistic interpretation of how nitrogen drives plant growth. It is very robust in predicting growth curves and the relationship between Nc and relative growth rate.


Asunto(s)
Ecosistema , Nitrógeno , Biomasa , Desarrollo de la Planta , Plantas , Zea mays
8.
Proc Natl Acad Sci U S A ; 116(38): 19001-19008, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31481618

RESUMEN

Accelerated anthropogenic impacts and climatic changes are widely considered to be responsible for unprecedented species extinction. However, determining their effects on extinction is challenging owing to the lack of long-term data with high spatial and temporal resolution. In this study, using historical occurrence records of 11 medium- to large-sized mammal species or groups of species in China from 905 BC to AD 2006, we quantified the distinctive associations of anthropogenic stressors (represented by cropland coverage and human population density) and climatic stressors (represented by air temperature) with the local extinction of these mammals. We found that both intensified human disturbances and extreme climate change were associated with the increased local extinction of the study mammals. In the cold phase (the premodern period of China), climate cooling was positively associated with increased local extinction, while in the warm phase (the modern period) global warming was associated with increased local extinction. Interactive effects between human disturbance and temperature change with the local extinction of elephants, rhinos, pandas, and water deer were found. Large-sized mammals, such as elephants, rhinos, and pandas, showed earlier and larger population declines than small-sized ones. The local extinction sensitivities of these mammals to the human population density and standardized temperature were estimated during 1700 to 2000. The quantitative evidence for anthropogenic and climatic associations with mammalian extinction provided insights into the driving processes of species extinction, which has important implications for biodiversity conservation under accelerating global changes.


Asunto(s)
Cambio Climático , Extinción Biológica , Calentamiento Global/historia , Actividades Humanas/estadística & datos numéricos , Mamíferos/clasificación , Mamíferos/crecimiento & desarrollo , Densidad de Población , Animales , Biodiversidad , Ecosistema , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia Antigua , Historia Medieval , Humanos
9.
New Phytol ; 231(6): 2297-2307, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33891310

RESUMEN

The soil pathogen-induced Janzen-Connell (JC) effect is considered as a primary mechanism regulating plant biodiversity worldwide. As predicted by the framework of the classic plant disease triangle, severity of plant diseases is often influenced by temperature, yet insufficient understanding of how increasing temperatures affect the JC effect contributes uncertainty in predictions about how global warming affects biodiversity. We conducted a 3-yr field warming experiment, combining open-top chambers with pesticide treatment, to test the effect of elevated temperatures on seedling mortality of a temperate tree species, Prunus padus, from a genus with known susceptibility to soil-borne pathogens. Elevated temperature significantly increased the mortality of P. padus seedlings in the immediate vicinity of parent trees, concurrent with increased relative abundance of pathogenic fungi identified to be virulent to Prunus species. Our study offers experimental evidence suggesting that global warming significantly intensifies the JC effect on a temperate tree species due to increased relative abundance of pathogenic fungi. This work advances our understanding about changes in the JC effect linked to ongoing global warming, which has important implications for predicting tree diversity in a warmer future.


Asunto(s)
Suelo , Árboles , Biodiversidad , Retroalimentación , Bosques , Plantones
10.
Oecologia ; 195(3): 751-758, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33566166

RESUMEN

Temporal dynamics of plant-pollinator interactions inform the mechanisms of community assembly and stability. However, most studies on the dynamics of pollination networks do not consider plant reproductive traits thus offering poor understanding of the mechanism of how networks maintain stable structure under seasonal changes in flower community. We studied seasonal dynamics of pollination networks in a subtropical monsoon forest in China with a clear rainy season (April-September) and dry season (October-March) over 2 consecutive years. We constructed dioecy-ignored networks (combining visitations to dioecious male and female plants by ignoring the difference between dioecious and hermaphroditic plants) and dioecy-considered networks (excluding those visitations that only occurred either on dioecious male or female plants) for eight sampling sessions for each season. Although flower richness and flower abundance were higher in the rainy season than in the dry season, no pronounced seasonal difference was found in network specialization, nestedness and modularity for both networks. There were only significant differences in plant community robustness and pollinator specialization between seasons for dioecy-considered networks but not for dioecy-ignored networks. Furthermore, we found the flower abundance of dioecious and hermaphrodite plants mostly showed trade-off variation between rainy and dry seasons. Our results suggest various plant reproductive traits affect the temporal dynamics of pollination networks, which should be considered for conservation of plant-pollinator interactions in forest communities.


Asunto(s)
Fitomejoramiento , Polinización , Animales , China , Ecosistema , Femenino , Flores , Bosques , Insectos , Masculino , Estaciones del Año
11.
Ecol Lett ; 22(2): 284-291, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30467932

RESUMEN

The underlying drivers of ß-diversity along latitudinal gradients have been unclear. Previous studies have focused on ß-diversities calculated at a local scale and shed limited light on regional ß-diversity. We tested the much-debated effects of range size vs. environmental filtering on the ß-gradient using data from the US Forest Inventory Analysis Program. We showed that the drivers of the ß-gradient were scale dependent. At the local scale species spatial patterns contributed little to the ß-gradient, whereas at the regional scale spatial patterns dominated the gradient and a U-shape latitudinal relationship for the standardised ß-diversity deviation was revealed. The relationship can be explained by spatial variation in climate and soil texture, thus supporting the environmental filtering hypothesis. But it is inconsistent with Rapoport's rule about the effect of range size on ß-gradient. These results resolve the debate on whether species spatial distributions contribute to ß-gradient and attest the importance of environmental filtering in determining regional ß-diversity.


Asunto(s)
Ecosistema , Árboles , Biodiversidad , Clima , Estados Unidos
12.
New Phytol ; 223(1): 462-474, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30861145

RESUMEN

Soil plant-pathogenic (PF) and mycorrhizal fungi (MF) are both important in maintaining plant diversity, for example via host-specialized effects. However, empirical knowledge on the degree of host specificity and possible factors affecting the fungal assemblages is lacking. We identified PF and MF in fine roots of 519 individuals across 45 subtropical tree species in southern China in order to quantify the importance of host phylogeny (including via its effects on functional traits), habitat and space in determining fungal communities. We also compared host specificity in PF and MF at different host-phylogenetic scales. In both PF and MF, host phylogeny independently accounted for > 19% of the variation in fungal richness and composition, whereas environmental and spatial factors each explained no more than 4% of the variation. Over 77% of the variation explained by phylogeny was attributable to covariation in plant functional traits. Host specificity was phylogenetically scale-dependent, being stronger in PF than in MF at low host-phylogenetic scales (e.g. within genus) but similar at larger scales. Our study suggests that host-phylogenetic effects dominate the assembly of both PF and MF communities, resulting from phylogenetically clustered plant traits. The scale-dependent host specificity implies that PF were specialized at lower-level and MF at higher-level host taxa.


Asunto(s)
Biodiversidad , Bosques , Especificidad del Huésped , Micorrizas/fisiología , Filogenia , Modelos Lineales , Fotosíntesis , Especificidad de la Especie , Clima Tropical
13.
Proc Natl Acad Sci U S A ; 113(3): 674-9, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26733680

RESUMEN

Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species.


Asunto(s)
Biodiversidad , Geografía , Árboles/fisiología , Internacionalidad , Modelos Lineales , Especificidad de la Especie , Clima Tropical
14.
Glob Chang Biol ; 24(12): 5802-5814, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30238565

RESUMEN

Under many global-change scenarios, small habitat patches are the most vulnerable to destruction. For example, smaller ponds are at greater risk in a drying climate and their loss would remove any obligate aquatic individuals present. We asked what proportional loss of species diversity from metacommunities comprised of discrete habitat patches should be expected from attrition (complete loss) of only the smallest patches under such a premise. We analyzed 175 published datasets for different taxonomic groups (vertebrates, invertebrates, and plants) and habitat types (islands, habitat islands, and fragments). We simulated the destruction of only the smallest patches to an approximate 20% of total area (range: 15.2%-24.2%) and analyzed species loss. Mean [± 95% CI] species loss was 12.7% [10.8, 14.6], although 18.3% of datasets lost no species. Four broad patterns of species loss were evident, reflecting underlying differences in minimum area requirements and the degree of species turnover among patches. Regression modeling showed species loss increased with greater species turnover among patches (ßSIM ) and decreased with greater area scaling of diversity (i.e., larger power-law island species-area relationship exponents). Losses also increased with greater numbers of single-patch endemics and with increasing proportions of patches destroyed. After accounting for these predictors, neither taxonomic group nor habitat type increased explained variation in species loss. Attrition of the smallest patches removed species in >80% of metacommunities, despite all larger patches and >75% of total area remaining intact. At both 10% and 20% area reduction, median species loss across all datasets was around 50% higher than predicted from methods based on the species-area relationship. We conclude that any mechanism of global change that selectively destroys small habitat patches will lead to imminent extinctions in most discrete metacommunities.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Clima , Conservación de los Recursos Naturales , Invertebrados , Islas , Plantas , Vertebrados
15.
Am J Bot ; 105(9): 1469-1476, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30098589

RESUMEN

PREMISE OF THE STUDY: Habitat filtering and non-habitat processes are two major processes affecting spatial distributions of species. Because trees at different life stages perform differently, the life stage of tree species could play an important role in shaping the spatial distribution of species and community assembly. Here, we examined the possible changes of spatial distributions of species and evaluated the shifts in the relative importance of habitat filtering and non-habitat processes across life stages in a 50-ha subtropical forest plot in China. METHODS: We modeled species distribution with and without life stages using three point process models. The performance of these models, with and without considering life stages, was evaluated by comparing the species-area curve and the degree of clustering. The relative effects of habitat filtering and non-habitat processes across life stages were quantified using a spatial variance decomposition method. KEY RESULTS: The incorporation of life stage considerably improved the goodness-of-fit of these point process models at both the community and species levels. Non-habitat processes explained about 90% of the total variation in spatial distribution, while habitat filtering explained about 10%. The relative importance of habitat filtering only increased slightly from sapling to adult stages. CONCLUSIONS: Point process models performed better when life stages are included, indicating the importance of considering life stage when modeling spatial distributions for understanding community assembly. The finding that habitat acts weakly and non-habitat processes act dominantly in determining spatial distributions of species suggests a strong dependence of spatial patterns on non-habitat processes.


Asunto(s)
Ecosistema , Árboles , Biodiversidad , China , Demografía , Distribución de Poisson , Árboles/crecimiento & desarrollo
16.
Proc Natl Acad Sci U S A ; 112(13): 4009-14, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25775576

RESUMEN

Tree mortality, growth, and recruitment are essential components of forest dynamics and resiliency, for which there is great concern as climate change progresses at high latitudes. Tree mortality has been observed to increase over the past decades in many regions, but the causes of this increase are not well understood, and we know even less about long-term changes in growth and recruitment rates. Using a dataset of long-term (1958-2009) observations on 1,680 permanent sample plots from undisturbed natural forests in western Canada, we found that tree demographic rates have changed markedly over the last five decades. We observed a widespread, significant increase in tree mortality, a significant decrease in tree growth, and a similar but weaker trend of decreasing recruitment. However, these changes varied widely across tree size, forest age, ecozones, and species. We found that competition was the primary factor causing the long-term changes in tree mortality, growth, and recruitment. Regional climate had a weaker yet still significant effect on tree mortality, but little effect on tree growth and recruitment. This finding suggests that internal community-level processes-more so than external climatic factors-are driving forest dynamics.


Asunto(s)
Cambio Climático , Bosques , Árboles/crecimiento & desarrollo , Canadá , Clima , Recolección de Datos , Bases de Datos Factuales , Geografía , Modelos Estadísticos , Factores de Tiempo
17.
Oecologia ; 185(2): 269-279, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28879614

RESUMEN

Although it has long been recognized that the diversified sexual systems of plants could influence community patterns and pollination specialization, plant sex is not usually incorporated to quantify plant-pollinator networks. In this study, we observed 1776 visitations corresponding to 84 pollinator species and 28 plant species (19 sexually monomorphic plants and 9 dioecious plants) in a subtropical forest, China. We constructed three networks by, respectively, combining visitations to dioecious female and male plants at the species level, separating them, and retaining the shared visitations between them. When the shared visitations between male and female plants were considered, the modularity was increased and the nestedness was decreased with a significantly low robustness for the plant community. Only in this network, most dioecious and hermaphroditic plants were associated with different pollinator groups and separated to different modules. The results also showed that dioecious plants were more generalized and more likely to be module hubs in sex-combined network and sex-separated network but not in sex-shared network. Only in the sex-separated network, pollinators in dioecious modules were less selective than in hermaphroditic modules. Our study shows incorporating the different visitations between plant sexes could affect the analysis of key network structure properties and the description of pollination niche. To better understand niche partitioning and stability of plant-pollinator communities, it is necessary to compare pollination networks considering plant sexual diversity.


Asunto(s)
Bosques , Insectos/fisiología , Fenómenos Fisiológicos de las Plantas , Polinización , Animales , China , Conducta Alimentaria
18.
Nature ; 473(7347): 368-71, 2011 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21593870

RESUMEN

Extinction from habitat loss is the signature conservation problem of the twenty-first century. Despite its importance, estimating extinction rates is still highly uncertain because no proven direct methods or reliable data exist for verifying extinctions. The most widely used indirect method is to estimate extinction rates by reversing the species-area accumulation curve, extrapolating backwards to smaller areas to calculate expected species loss. Estimates of extinction rates based on this method are almost always much higher than those actually observed. This discrepancy gave rise to the concept of an 'extinction debt', referring to species 'committed to extinction' owing to habitat loss and reduced population size but not yet extinct during a non-equilibrium period. Here we show that the extinction debt as currently defined is largely a sampling artefact due to an unrecognized difference between the underlying sampling problems when constructing a species-area relationship (SAR) and when extrapolating species extinction from habitat loss. The key mathematical result is that the area required to remove the last individual of a species (extinction) is larger, almost always much larger, than the sample area needed to encounter the first individual of a species, irrespective of species distribution and spatial scale. We illustrate these results with data from a global network of large, mapped forest plots and ranges of passerine bird species in the continental USA; and we show that overestimation can be greater than 160%. Although we conclude that extinctions caused by habitat loss require greater loss of habitat than previously thought, our results must not lead to complacency about extinction due to habitat loss, which is a real and growing threat.


Asunto(s)
Ecosistema , Extinción Biológica , Modelos Estadísticos , Animales , Biodiversidad , Modelos Biológicos , Passeriformes/clasificación , Densidad de Población , Árboles/crecimiento & desarrollo , Estados Unidos
19.
Glob Chang Biol ; 22(1): 12-24, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26442433

RESUMEN

The need for rigorous analyses of climate impacts has never been more crucial. Current textbooks state that climate directly influences ecosystem annual net primary productivity (NPP), emphasizing the urgent need to monitor the impacts of climate change. A recent paper challenged this consensus, arguing, based on an analysis of NPP for 1247 woody plant communities across global climate gradients, that temperature and precipitation have negligible direct effects on NPP and only perhaps have indirect effects by constraining total stand biomass (Mtot ) and stand age (a). The authors of that study concluded that the length of the growing season (lgs ) might have a minor influence on NPP, an effect they considered not to be directly related to climate. In this article, we describe flaws that affected that study's conclusions and present novel analyses to disentangle the effects of stand variables and climate in determining NPP. We re-analyzed the same database to partition the direct and indirect effects of climate on NPP, using three approaches: maximum-likelihood model selection, independent-effects analysis, and structural equation modeling. These new analyses showed that about half of the global variation in NPP could be explained by Mtot combined with climate variables and supported strong and direct influences of climate independently of Mtot , both for NPP and for net biomass change averaged across the known lifetime of the stands (ABC = average biomass change). We show that lgs is an important climate variable, intrinsically correlated with, and contributing to mean annual temperature and precipitation (Tann and Pann ), all important climatic drivers of NPP. Our analyses provide guidance for statistical and mechanistic analyses of climate drivers of ecosystem processes for predictive modeling and provide novel evidence supporting the strong, direct role of climate in determining vegetation productivity at the global scale.


Asunto(s)
Clima , Ecosistema , Plantas/metabolismo , Estaciones del Año , Biomasa , Modelos Teóricos , Desarrollo de la Planta , Lluvia , Temperatura
20.
Glob Chang Biol ; 21(2): 528-49, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25258024

RESUMEN

Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥ 1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 °S-61 °N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in precipitation (up to ± 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m(-2) yr(-1) and 3.1 g S m(-2) yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Bosques
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA