Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 186(6): 1179-1194.e15, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36931245

RESUMEN

The human brain undergoes rapid development at mid-gestation from a pool of neural stem and progenitor cells (NSPCs) that give rise to the neurons, oligodendrocytes, and astrocytes of the mature brain. Functional study of these cell types has been hampered by a lack of precise purification methods. We describe a method for prospectively isolating ten distinct NSPC types from the developing human brain using cell-surface markers. CD24-THY1-/lo cells were enriched for radial glia, which robustly engrafted and differentiated into all three neural lineages in the mouse brain. THY1hi cells marked unipotent oligodendrocyte precursors committed to an oligodendroglial fate, and CD24+THY1-/lo cells marked committed excitatory and inhibitory neuronal lineages. Notably, we identify and functionally characterize a transcriptomically distinct THY1hiEGFRhiPDGFRA- bipotent glial progenitor cell (GPC), which is lineage-restricted to astrocytes and oligodendrocytes, but not to neurons. Our study provides a framework for the functional study of distinct cell types in human neurodevelopment.


Asunto(s)
Células-Madre Neurales , Ratones , Animales , Humanos , Células-Madre Neurales/metabolismo , Neuronas , Diferenciación Celular/fisiología , Neuroglía/metabolismo , Encéfalo , Astrocitos
2.
Nature ; 590(7844): 122-128, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33473210

RESUMEN

Ageing is characterized by the development of persistent pro-inflammatory responses that contribute to atherosclerosis, metabolic syndrome, cancer and frailty1-3. The ageing brain is also vulnerable to inflammation, as demonstrated by the high prevalence of age-associated cognitive decline and Alzheimer's disease4-6. Systemically, circulating pro-inflammatory factors can promote cognitive decline7,8, and in the brain, microglia lose the ability to clear misfolded proteins that are associated with neurodegeneration9,10. However, the underlying mechanisms that initiate and sustain maladaptive inflammation with ageing are not well defined. Here we show that in ageing mice myeloid cell bioenergetics are suppressed in response to increased signalling by the lipid messenger prostaglandin E2 (PGE2), a major modulator of inflammation11. In ageing macrophages and microglia, PGE2 signalling through its EP2 receptor promotes the sequestration of glucose into glycogen, reducing glucose flux and mitochondrial respiration. This energy-deficient state, which drives maladaptive pro-inflammatory responses, is further augmented by a dependence of aged myeloid cells on glucose as a principal fuel source. In aged mice, inhibition of myeloid EP2 signalling rejuvenates cellular bioenergetics, systemic and brain inflammatory states, hippocampal synaptic plasticity and spatial memory. Moreover, blockade of peripheral myeloid EP2 signalling is sufficient to restore cognition in aged mice. Our study suggests that cognitive ageing is not a static or irrevocable condition but can be reversed by reprogramming myeloid glucose metabolism to restore youthful immune functions.


Asunto(s)
Envejecimiento/metabolismo , Disfunción Cognitiva/prevención & control , Células Mieloides/metabolismo , Adulto , Anciano , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Animales , Respiración de la Célula , Células Cultivadas , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/genética , Dinoprostona/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Glucógeno/biosíntesis , Glucógeno/metabolismo , Humanos , Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/metabolismo , Mitocondrias/metabolismo , Células Mieloides/inmunología , Subtipo EP2 de Receptores de Prostaglandina E/antagonistas & inhibidores , Subtipo EP2 de Receptores de Prostaglandina E/deficiencia , Subtipo EP2 de Receptores de Prostaglandina E/genética , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal/efectos de los fármacos , Memoria Espacial/efectos de los fármacos
3.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836556

RESUMEN

CD47 is an antiphagocytic "don't eat me" signal that inhibits programmed cell removal of self. As red blood cells (RBCs) age they lose CD47 expression and become susceptible to programmed cell removal by macrophages. CD47-/- mice infected with Plasmodium yoelii, which exhibits an age-based preference for young RBCs, were previously demonstrated to be highly resistant to malaria infection. Our study sought to test the therapeutic benefit of CD47 blockade on ameliorating the clinical syndromes of experimental cerebral malaria (ECM), using the Plasmodium berghei ANKA (Pb-A) murine model. In vitro we tested the effect of anti-CD47 mAb on Plasmodium-infected RBC phagocytosis and found that anti-CD47 treatment significantly increased clearance of Plasmodium-infected RBCs. Infection of C57BL/6 mice with Pb-A is lethal and mice succumb to the clinical syndromes of CM between days 6 and 10 postinfection. Strikingly, treatment with anti-CD47 resulted in increased survival during the cerebral phase of Pb-A infection. Anti-CD47-treated mice had increased lymphocyte counts in the peripheral blood and increased circulating levels of IFN-γ, TNF-α, and IL-22. Despite increased circulating levels of inflammatory cytokines, anti-CD47-treated mice had reduced pathological features in the brain. Survival of ECM in anti-CD47-treated mice was correlated with reduced cellular accumulation in the cerebral vasculature, improved blood-brain barrier integrity, and reduced cytotoxic activity of infiltrating CD8+ T cells. These results demonstrate the therapeutic benefit of anti-CD47 to reduce morbidity in a lethal model of ECM, which may have implications for preventing mortality in young African children who are the highest casualties of CM.


Asunto(s)
Antígeno CD47/antagonistas & inhibidores , Interacciones Huésped-Parásitos , Malaria Cerebral/patología , Animales , Anticuerpos Monoclonales/inmunología , Antígeno CD47/inmunología , Eritrocitos/parasitología , Humanos , Malaria Cerebral/prevención & control , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fagocitosis
4.
Neurosurg Focus ; 45(4): E9, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30269577

RESUMEN

OBJECTIVE: Children with neural tube defects (NTDs) require timely surgical intervention coupled with long-term management by multiple highly trained specialty healthcare teams. In resource-limited settings, outcomes are greatly affected by the lack of coordinated care. The purpose of this study was to characterize outcomes of spina bifida patients treated at Mulago National Referral Hospital (MNRH) through follow-up phone surveys. METHODS: All children presenting to MNRH with NTDs between January 1, 2014, and August 31, 2015, were eligible for this study. For those with a documented telephone number, follow-up phone surveys were conducted with the children's caregivers to assess mortality, morbidity, follow-up healthcare, and access to medical resources. RESULTS: Of the 201 patients, the vast majority (n = 185, 92%) were diagnosed with myelomeningocele. The median age at presentation was 6 days, the median length of stay was 20 days, and the median time to surgery was 10 days. Half of the patients had documented surgeries, with 5% receiving multiple procedures (n = 102, 51%): 80 defect closures (40%), 32 ventriculoperitoneal shunts (15%), and 1 endoscopic third ventriculostomy (0.5%). Phone surveys were completed for 53 patients with a median time to follow-up of 1.5 years. There were no statistically significant differences in demographics between the surveyed and nonrespondent groups. The 1-year mortality rate was 34% (n = 18). At the time of survey, 91% of the survivors (n = 30) have received healthcare since their initial discharge from MNRH, with 67% (n = 22) returning to MNRH. Hydrocephalus was diagnosed in 29 patients (88%). Caregivers reported physical deficits in 39% of patients (n = 13), clubfoot in 18% (n = 6), and bowel or bladder incontinence in 12% (n = 4). The surgical complication rate was 2.5%. Glasgow Outcome Scale-Extended pediatric revision scores were correlated with upper good recovery in 58% (n = 19) of patients, lower good recovery in 30% (n = 10), and moderate disability in 12% of patients (n = 4). Only 5 patients (15%) reported access to home health resources postdischarge. CONCLUSIONS: This study is the first to characterize the outcomes of children with NTDs that were treated at Uganda's national referral hospital. There is a great need for improved access to and coordination of care in antenatal, perioperative, and long-term settings to improve morbidity and mortality.


Asunto(s)
Defectos del Tubo Neural/cirugía , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Hidrocefalia/etiología , Lactante , Recién Nacido , Tiempo de Internación , Masculino , Meningomielocele/cirugía , Defectos del Tubo Neural/complicaciones , Defectos del Tubo Neural/mortalidad , Manejo de Atención al Paciente , Derivación y Consulta , Centros de Atención Terciaria , Uganda
5.
STAR Protoc ; 4(4): 102674, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37897731

RESUMEN

Prospective isolation of defined cell types is critical for the functional study of stem cells, especially in primary human tissues. Here, we present a protocol for purifying 10 transcriptomically and functionally distinct neural stem and progenitor cell types from the developing human brain using fluorescence-activated cell sorting. We describe steps for tissue dissociation, staining, and cell sorting as well as downstream functional experiments for measuring clonogenicity, differentiation, and engraftment potential of purified populations. For complete details on the use and execution of this protocol, please refer to Liu et al. (2023).1.


Asunto(s)
Encéfalo , Células Madre , Humanos , Diferenciación Celular , Separación Celular , Citometría de Flujo
6.
Front Aging Neurosci ; 14: 875925, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360207

RESUMEN

[This corrects the article DOI: 10.3389/fnagi.2020.575990.].

7.
Clin Cancer Res ; 27(23): 6467-6478, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34475101

RESUMEN

PURPOSE: Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, a key process of cancer metabolism. PKM2 is preferentially expressed by glioblastoma (GBM) cells with minimal expression in healthy brain. We describe the development, validation, and translation of a novel PET tracer to study PKM2 in GBM. We evaluated 1-((2-fluoro-6-[18F]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA-23) in cell culture, mouse models of GBM, healthy human volunteers, and patients with GBM. EXPERIMENTAL DESIGN: [18F]DASA-23 was synthesized with a molar activity of 100.47 ± 29.58 GBq/µmol and radiochemical purity >95%. We performed initial testing of [18F]DASA-23 in GBM cell culture and human GBM xenografts implanted orthotopically into mice. Next, we produced [18F]DASA-23 under FDA oversight, and evaluated it in healthy volunteers and a pilot cohort of patients with glioma. RESULTS: In mouse imaging studies, [18F]DASA-23 clearly delineated the U87 GBM from surrounding healthy brain tissue and had a tumor-to-brain ratio of 3.6 ± 0.5. In human volunteers, [18F]DASA-23 crossed the intact blood-brain barrier and was rapidly cleared. In patients with GBM, [18F]DASA-23 successfully outlined tumors visible on contrast-enhanced MRI. The uptake of [18F]DASA-23 was markedly elevated in GBMs compared with normal brain, and it identified a metabolic nonresponder within 1 week of treatment initiation. CONCLUSIONS: We developed and translated [18F]DASA-23 as a new tracer that demonstrated the visualization of aberrantly expressed PKM2 for the first time in human subjects. These results warrant further clinical evaluation of [18F]DASA-23 to assess its utility for imaging therapy-induced normalization of aberrant cancer metabolism.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Neoplasias Encefálicas/patología , Compuestos de Diazonio , Glioblastoma/patología , Glucólisis , Humanos , Ratones , Tomografía de Emisión de Positrones/métodos , Piruvato Quinasa/metabolismo , Ácidos Sulfanílicos
8.
Front Aging Neurosci ; 12: 575990, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381020

RESUMEN

Stroke is the leading cause of serious long-term disability, significantly reducing mobility in almost half of the affected patients aged 65 years and older. There are currently no proven neurorestorative treatments for chronic stroke. To address the complex problem of restoring function in ischemic brain tissue, stem cell transplantation-based therapies have emerged as potential restorative therapies. Aligning with the major cell types found within the ischemic brain, stem-cell-based clinical trials for ischemic stroke have fallen under three broad cell lineages: hematopoietic, mesenchymal, and neural. In this review article, we will discuss the scientific rationale for transplanting cells from each of these lineages and provide an overview of published and ongoing trials using this framework.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA