Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Clin Chem ; 57(11): 1545-55, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21914789

RESUMEN

BACKGROUND: With expanding biomarker discovery efforts and increasing costs of drug development, it is critical to maximize the value of mass-limited clinical samples. The main limitation of available methods is the inability to isolate and analyze, from a single sample, molecules requiring incompatible extraction methods. Thus, we developed a novel semiautomated method for tissue processing and tissue milling and division (TMAD). METHODS: We used a SilverHawk atherectomy catheter to collect atherosclerotic plaques from patients requiring peripheral atherectomy. Tissue preservation by flash freezing was compared with immersion in RNAlater®, and tissue grinding by traditional mortar and pestle was compared with TMAD. Comparators were protein, RNA, and lipid yield and quality. Reproducibility of analyte yield from aliquots of the same tissue sample processed by TMAD was also measured. RESULTS: The quantity and quality of biomarkers extracted from tissue prepared by TMAD was at least as good as that extracted from tissue stored and prepared by traditional means. TMAD enabled parallel analysis of gene expression (quantitative reverse-transcription PCR, microarray), protein composition (ELISA), and lipid content (biochemical assay) from as little as 20 mg of tissue. The mean correlation was r = 0.97 in molecular composition (RNA, protein, or lipid) between aliquots of individual samples generated by TMAD. We also demonstrated that it is feasible to use TMAD in a large-scale clinical study setting. CONCLUSIONS: The TMAD methodology described here enables semiautomated, high-throughput sampling of small amounts of heterogeneous tissue specimens by multiple analytical techniques with generally improved quality of recovered biomolecules.


Asunto(s)
Lípidos/análisis , Placa Aterosclerótica/química , Proteínas/análisis , ARN/análisis , Manejo de Especímenes/métodos , Conservación de Tejido/métodos , Biomarcadores/análisis , Criopreservación , Disección , Humanos , Lípidos/aislamiento & purificación , Proteínas/aislamiento & purificación , ARN/aislamiento & purificación , ARN Mensajero/análisis , ARN Mensajero/aislamiento & purificación , Extractos de Tejidos/química
2.
Lipids Health Dis ; 9: 61, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20540749

RESUMEN

BACKGROUND: Cholesterol deposition in arterial wall drives atherosclerosis. The key goal of this study was to examine the relationship between plaque cholesterol content and patient characteristics that typically associate with disease state and lesion vulnerability. Quantitative assays for free cholesterol, cholesteryl ester, triglyceride, and protein markers in atherosclerotic plaque were established and applied to plaque samples from multiple patients and arterial beds (Carotid and peripheral arteries; 98 lesions in total). RESULTS: We observed a lower cholesterol level in restenotic than primary peripheral plaque. We observed a trend toward a higher level in symptomatic than asymptomatic carotid plaque. Peripheral plaque from a group of well-managed diabetic patients displayed a weak trend of more free cholesterol deposition than plaque from non-diabetic patients. Plaque triglyceride content exhibited less difference in the same comparisons. We also measured cholesterol in multiple segments within one carotid plaque sample, and found that cholesterol content positively correlated with markers of plaque vulnerability, and negatively correlated with stability markers. CONCLUSIONS: Our results offer important biological validation of cholesterol as a key lipid marker for plaque severity. Results also suggest cholesterol is a more sensitive plaque marker than routine histological staining for neutral lipids.


Asunto(s)
Aterosclerosis/patología , Colesterol/análisis , Índice de Severidad de la Enfermedad , Arterias/patología , Aterosclerosis/diagnóstico , Biomarcadores , Ésteres del Colesterol/análisis , Humanos , Proteínas/análisis , Triglicéridos/análisis
3.
Circulation ; 114(24): 2644-54, 2006 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-17145989

RESUMEN

BACKGROUND: Recent successes in the treatment of in-stent restenosis (ISR) by drug-eluting stents belie the challenges still faced in certain lesions and patient groups. We analyzed human coronary atheroma in de novo and restenotic disease to identify targets of therapy that might avoid these limitations. METHODS AND RESULTS: We recruited 89 patients who underwent coronary atherectomy for de novo atherosclerosis (n=55) or in-stent restenosis (ISR) of a bare metal stent (n=34). Samples were fixed for histology, and gene expression was assessed with a dual-dye 22,000 oligonucleotide microarray. Histological analysis revealed significantly greater cellularity and significantly fewer inflammatory infiltrates and lipid pools in the ISR group. Gene ontology analysis demonstrated the prominence of cell proliferation programs in ISR and inflammation/immune programs in de novo restenosis. Network analysis, which combines semantic mining of the published literature with the expression signature of ISR, revealed gene expression modules suggested as candidates for selective inhibition of restenotic disease. Two modules are presented in more detail, the procollagen type 1 alpha2 gene and the ADAM17/tumor necrosis factor-alpha converting enzyme gene. We tested our contention that this method is capable of identifying successful targets of therapy by comparing mean significance scores for networks generated from subsets of the published literature containing the terms "sirolimus" or "paclitaxel." In addition, we generated 2 large networks with sirolimus and paclitaxel at their centers. Both analyses revealed higher mean values for sirolimus, suggesting that this agent has a broader suppressive action against ISR than paclitaxel. CONCLUSIONS: Comprehensive histological and gene network analysis of human ISR reveals potential targets for directed abrogation of restenotic disease and recapitulates the results of clinical trials of existing agents.


Asunto(s)
Reestenosis Coronaria/terapia , Redes Reguladoras de Genes , Stents , Proteínas ADAM/genética , Proteínas ADAM/fisiología , Proteína ADAM17 , Adulto , Anciano , Colágeno/antagonistas & inhibidores , Colágeno/genética , Colágeno Tipo I , Enfermedad de la Arteria Coronaria/patología , Reestenosis Coronaria/metabolismo , Reestenosis Coronaria/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad
4.
Circ Cardiovasc Genet ; 4(6): 595-604, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22010137

RESUMEN

BACKGROUND: Atherosclerosis is a complex disease requiring improvements in diagnostic techniques and therapeutic treatments. Both improvements will be facilitated by greater exploration of the biology of atherosclerotic plaque. To this end, we carried out large-scale gene expression analysis of human atherosclerotic lesions. METHODS AND RESULTS: Whole genome expression analysis of 101 plaques from patients with peripheral artery disease identified a robust gene signature (1514 genes) that is dominated by processes related to Toll-like receptor signaling, T-cell activation, cholesterol efflux, oxidative stress response, inflammatory cytokine production, vasoconstriction, and lysosomal activity. Further analysis of gene expression in microdissected carotid plaque samples revealed that this signature is differentially expressed in macrophage-rich and smooth muscle cell-containing regions. A quantitative PCR gene expression panel and inflammatory composite score were developed on the basis of the atherosclerotic plaque gene signature. When applied to serial sections of carotid plaque, the inflammatory composite score was observed to correlate with histological and morphological features related to plaque vulnerability. CONCLUSIONS: The robust mRNA expression signature identified in the present report is associated with pathological features of vulnerable atherosclerotic plaque and may be useful as a source of biomarkers and targets of novel antiatherosclerotic therapies.


Asunto(s)
Perfilación de la Expresión Génica , Placa Aterosclerótica/genética , Placa Aterosclerótica/inmunología , Biomarcadores , Femenino , Humanos , Macrófagos/inmunología , Masculino , Datos de Secuencia Molecular , Proteínas/genética , Proteínas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA