Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(3): 920-928, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38207109

RESUMEN

Organic nanoparticles are used in nanomedicine, including for cancer treatment and some types of COVID-19 vaccines. Here, we demonstrate the scalable, rapid, reproducible, and cost-effective synthesis of three model organic nanoparticle formulations relevant to nanomedicine applications. We employed a custom-made, low-cost fluid mixer device constructed from a commercially available three-dimensional printer. We investigated how systematically changing aqueous and organic volumetric flow rate ratios determined liposome, polymer nanoparticle, and solid lipid nanoparticle sizes, size distributions, and payload encapsulation efficiencies. By manipulating inlet volumes, we synthesized organic nanoparticles with encapsulation efficiencies approaching 100% for RNA-based payloads. The synthesized organic nanoparticles were safe and effective at the cell culture level, as demonstrated by various assays. Such cost-effective synthesis approaches could potentially increase the accessibility to clinically relevant organic nanoparticle formulations for personalized nanomedicine applications at the point of care, especially in nonhospital and low-resource settings.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Humanos , Sistemas de Liberación de Medicamentos/métodos , Nanomedicina/métodos , Sistemas de Atención de Punto , Vacunas contra la COVID-19 , Análisis Costo-Beneficio , Liposomas
2.
Adv Funct Mater ; 34(8)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38828467

RESUMEN

Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.

3.
BMC Med ; 22(1): 367, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237933

RESUMEN

BACKGROUND: Current cardiovascular prevention strategies are based on studies that seldom include valvular heart disease (VHD). The role of modifiable lifestyle factors on VHD progression and life expectancy among the elderly with different socioeconomic statuses (SES) remains unknown. METHODS: This cohort study included 164,775 UK Biobank participants aged 60 years and older. Lifestyle was determined using a five-factor scoring system covering smoking status, obesity, physical activity, diet, and sleep patterns. Based on this score, participants were then classified into "poor," "moderate," or "ideal" lifestyle groups. SES was classified as high or low based on the Townsend Deprivation Index. The association of lifestyle with major VHD progression was evaluated using a multistate mode. The life table method was employed to determine life expectancy with VHD and without VHD. RESULTS: The UK Biobank documented 5132 incident VHD cases with a mean follow-up of 12.3 years and 1418 deaths following VHD with a mean follow-up of 6.0 years. Compared to those with a poor lifestyle, women and men followed an ideal lifestyle had lower hazard ratios for incident VHD (0.66 with 95% CI, 0.59-0.73 for women and 0.77 with 95% CI, 0.71-0.83 for men) and for post-VHD mortality (0.58 for women, 95% CI 0.46-0.74 and 0.62 for men, 95% CI 0.54-0.73). When lifestyle and SES were combined, the lower risk of incident VHD and mortality were observed among participants with an ideal lifestyle and high SES compared to participants with an unhealthy lifestyle and low SES. There was no significant interaction between lifestyle and SES in their correlation with the incidence and subsequent mortality of VHD. Among low SES populations, 60-year-old women and men with VHD who followed ideal lifestyles lived 4.2 years (95% CI, 3.8-4.7) and 5.1 years (95% CI, 4.5-5.6) longer, respectively, compared to those with poor lifestyles. In contrast, the life expectancy gain for those without VHD was 4.4 years (95% CI, 4.0-4.8) for women and 5.3 years (95% CI, 4.8-5.7) for men when adhering to an ideal lifestyle versus a poor one. CONCLUSIONS: Adopting a healthier lifestyle can significantly slow down the progression from free of VHD to incident VHD and further to death and increase life expectancy for both individuals with and without VHD within diverse socioeconomic elderly populations.


Asunto(s)
Enfermedades de las Válvulas Cardíacas , Esperanza de Vida , Estilo de Vida , Humanos , Femenino , Masculino , Anciano , Reino Unido/epidemiología , Persona de Mediana Edad , Enfermedades de las Válvulas Cardíacas/epidemiología , Enfermedades de las Válvulas Cardíacas/mortalidad , Progresión de la Enfermedad , Anciano de 80 o más Años , Estudios de Cohortes , Clase Social
4.
Am Heart J ; 274: 65-74, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38701961

RESUMEN

BACKGROUND: There has not been a consensus on the prothesis sizing strategy in type 0 bicuspid aortic stenosis (AS) patients undergoing transcatheter aortic valve replacement (TAVR). Modifications to standard annular sizing strategies might be required due to the distinct anatomical characteristics. We have devised a downsizing strategy for TAVR using a self-expanding valve specifically for patients with type 0 bicuspid AS. The primary aim of this study is to compare the safety and efficacy of downsizing strategy with the Standard Annulus Sizing Strategy in TAVR for patients with type 0 bicuspid AS. TRIAL DESIGN: It is a prospective, multi-center, superiority, single-blinded, randomized controlled trial comparing the Down Sizing and Standard Annulus Sizing Strategy in patients with type 0 bicuspid aortic stenosis undergoing transcatheter aortic valve replacement. Eligible participants will include patients with severe type 0 bicuspid AS, as defined by criteria such as mean gradient across aortic valve ≥40 mmHg, peak aortic jet velocity ≥4.0 m/s, aortic valve area (AVA) ≤1.0 cm², or AVA index ≤0.6 cm2/m2. These patients will be randomly assigned, in a 1:1 ratio, to either the Down Sizing Strategy group or the Standard Sizing Strategy group. In the Down Sizing Strategy group, a valve one size smaller will be implanted if the "waist sign" manifests along with less than mild regurgitation during balloon pre-dilatation. The primary end point of the study is a composite of VARC-3 defined device success, absence of both permanent pacemaker implantation due to high-degree atrioventricular block and new-onset complete left bundle branch block. CONCLUSION: This study will compare the safety and efficacy of Down Sizing Strategy with the Standard Annulus Sizing Strategy and provide valuable insights into the optimal approach for sizing in TAVR patients with type 0 bicuspid AS. We hypothesize that the Down Sizing Strategy will demonstrate superiority when compared to the Standard Annulus Sizing Strategy. (Down Sizing Strategy (HANGZHOU Solution) vs Standard Sizing Strategy TAVR in Bicuspid Aortic Stenosis (Type 0) (TAILOR-TAVR), NCT05511792).


Asunto(s)
Estenosis de la Válvula Aórtica , Enfermedad de la Válvula Aórtica Bicúspide , Prótesis Valvulares Cardíacas , Diseño de Prótesis , Reemplazo de la Válvula Aórtica Transcatéter , Femenino , Humanos , Masculino , Válvula Aórtica/cirugía , Válvula Aórtica/anomalías , Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/cirugía , Enfermedad de la Válvula Aórtica Bicúspide/cirugía , Enfermedad de la Válvula Aórtica Bicúspide/complicaciones , Estudios Prospectivos , Método Simple Ciego , Reemplazo de la Válvula Aórtica Transcatéter/métodos
5.
Cancer Cell Int ; 24(1): 172, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750489

RESUMEN

BACKGROUND: Cervical cancer is a human papillomavirus (HPV)-related disease. HPV type 16 (HPV16), which is the predominant cause of cervical cancer, can encode miRNAs (HPV16-miRNAs). However, the role of HPV16-miRNAs in the pathogenesis of cervical cancer remains unclear. METHODS: Human cervical cancer cell lines SiHa (HPV16-positive) and C33A (HPV-negative), and cervical cancer tissues were collected to investigate the expression levels of two HPV16-miRNAs (HPV16-miR-H1 and HPV16-miR-H6). The overexpression and knockdown of HPV16-miR-H1 and HPV16-miR-H6 were performed using the lentiviral vector system and miRNA inhibitors, respectively. RNA-sequencing (RNA-seq) analysis and H3K27ac chromatin immunoprecipitation and sequencing (CHIP-seq) experiments were utilized to explore the roles of HPV16-miR-H1 and HPV16-miR-H6 facilitated by enhancers. CCK8, EdU, transwell, and wound healing assays were performed to verify the effects of HPV16-miR-H1 and HPV16-miR-H6 on cell proliferation and migration. RESULTS: HPV16-miR-H1 and HPV16-miR-H6 were highly expressed in both SiHa cells and tissue samples from HPV16-positive cervical cancer patients. RNA-seq analysis showed that HPV16-miR-H1 and HPV16-miR-H6 induced the upregulation of numerous tumor progression-associated genes. H3K27ac CHIP-seq experiments further revealed that HPV16-miR-H1 and HPV16-miR-H6 modulated the expression of critical genes by regulating their enhancer activity. The functional study demonstrated that HPV16-miR-H1 and HPV16-miR-H6 increased the migratory capacity of SiHa cells. CONCLUSIONS: Our data shed light on the role of HPV16-encoded miRNAs in cervical cancer, particularly emphasizing their involvement in the miRNA-enhancer-target gene system. This novel regulatory mechanism of HPV16-miRNAs provides new insights and approaches for the development of therapeutic strategies by targeting HPV16-positive cervical cancer.

6.
J Surg Res ; 295: 385-392, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38070251

RESUMEN

INTRODUCTION: The membranous septum (MS) length measured by cardiac computed tomography (CT) is useful for the prediction of permanent pacemaker implantation (PPMI) and new left bundle branch block (LBBB) after transcatheter aortic valve replacement. However, its predictive value for patients undergoing surgical aortic valve replacement (SAVR) is unknown. METHODS: A total of 2531 consecutive patients were registered in the institutional Society of Thoracic Surgeons database between July 2017 and June 2020. Patients who underwent non-SAVR procedures, had prior pacemaker/implantable cardioverter defibrillator, prior SAVR, no preprocedural CT assessment, or suboptimal CT imaging were excluded. RESULTS: A total of 126 SAVR with preprocedural CT assessment were analyzed. Bicuspid aortic valve morphology was confirmed on CT in 59.5% of patients. There were three new PPMIs and five new LBBBs observed after SAVR at the time of discharge. In-hospital mortality was 0.8%. Low left ventricular (LV) ejection fraction (<50%), LV mass index >120 g/m2, large right coronary artery height, and MS length <1.5 mm predicted new PPMI/LBBB. Multivariate analysis showed LV mass index >120 g/m2 (odds ratio: 9.165; 95% confidence interval: 1.644-51.080; P = 0.011) and MS length <1.5 mm (odds ratio: 14.449; 95% confidence interval: 1.632-127.954; P = 0.016) were independent predictors for new PPMI/LBBB. CONCLUSIONS: Short MS length on preoperative cardiac CT is a powerful and novel predictor for the risk of new PPMI/LBBB after SAVR. Special care should be taken in patients with short MS length to avoid suture-mediated trauma.


Asunto(s)
Estenosis de la Válvula Aórtica , Marcapaso Artificial , Humanos , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/cirugía , Factores de Riesgo , Resultado del Tratamiento , Arritmias Cardíacas , Bloqueo de Rama/terapia
7.
J Biomed Inform ; 150: 104599, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38272433

RESUMEN

OBJECTIVE: Event extraction plays a crucial role in natural language processing. However, in the biomedical domain, the presence of nested events adds complexity to event extraction compared to single events, and these events usually have strong semantic relationships and constraints. Previous approaches ignored the binding connections between these complex nested events. This study aims to develop a unified framework based on event constraint information that jointly extract biomedical event triggers and arguments and enhance the performance of nested biomedical event extraction. MATERIAL AND METHODS: We propose a multi-task learning framework based on constraint information called CMBEE for the task of biomedical event extraction. The N-tuple form of event patterns is used to represent the constrained information, which is integrated into role detection and event type classification tasks. The framework use attention mechanism and gating mechanism to explore the fusion of multiple tuple information, as well as local and global constrained information fusion methods to dig further into the connections between events. RESULTS: Experimental results demonstrate that our proposed method achieves the highest F1 score on a multilevel event extraction biomedical (MLEE) corpus and performs favorably on the biomedical natural language processing shared task 2013 Genia event corpus (GE 13). CONCLUSIONS: The experimental results indicate that modeling event patterns and constraints for multi-event extraction tasks is effective for complex biomedical event extraction. The fusion strategy proposed in this study, which incorporates different constraint information, helps to better express semantic information.


Asunto(s)
Aprendizaje Automático , Procesamiento de Lenguaje Natural , Semántica , Minería de Datos/métodos
8.
Bioorg Chem ; 146: 107278, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484586

RESUMEN

VEGFR, a receptor tyrosine kinase inhibitor (TKI), is an important regulatory factor that promotes angiogenesis and vascular permeability. It plays a significant role in processes such as tumor angiogenesis, tumor cell invasion, and metastasis. VEGFR is mainly composed of three subtypes: VEGFR-1, VEGFR-2, and VEGFR-3. Among them, VEGFR-2 is the crucial signaling receptor for VEGF, which is involved in various pathological and physiological functions. At present, VEGFR-2 is closely related to a variety of cancers, such as non-small cell lung cancer (NSCLC), Hepatocellular carcinoma, Renal cell carcinoma, breast cancer, gastric cancer, glioma, etc. Consequently, VEGFR-2 serves as a crucial target for various cancer treatments. An increasing number of VEGFR inhibitors have been discovered to treat cancer, and they have achieved tremendous success in the clinic. Nevertheless, VEGFR inhibitors often exhibit severe cytotoxicity, resistance, and limitations in indications, which weaken the clinical therapeutic effect. In recent years, many small molecule inhibitors targeting VEGFR have been identified with anti-drug resistance, lower cytotoxicity, and better affinity. Here, we provide an overview of the structure and physiological functions of VEGFR, as well as some VEGFR inhibitors currently in clinical use. Also, we summarize the in vivo and in vitro activities, selectivity, structure-activity relationship, and therapeutic or preventive use of VEGFR small molecule inhibitors reported in patents in the past three years (2021-2023), thereby presenting the prospects and insights for the future development of targeted VEGFR inhibitors.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Renales , Neoplasias Pulmonares , Humanos , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inhibidores de la Angiogénesis/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Renales/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química
9.
J Nanobiotechnology ; 22(1): 486, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143545

RESUMEN

Lower back pain (LBP) is a common condition closely associated with intervertebral disc degeneration (IDD), causing a significant socioeconomic burden. Inflammatory activation in degenerated discs involves pro-inflammatory cytokines, dysregulated regulatory cytokines, and increased levels of nerve growth factor (NGF), leading to further intervertebral disc destruction and pain sensitization. Macrophage polarization is closely related to autophagy. Based on these pathological features, a structured biomimetic nanoparticle coated with TrkA-overexpressing macrophage membranes (TMNP@SR) with a rapamycin-loaded mesoporous silica core is developed. TMNP@SR acted like sponges to adsorbe inflammatory cytokines and NGF and delivers the autophagy regulator rapamycin (RAPA) into macrophages through homologous targeting effects of the outer engineered cell membrane. By regulating autophagy activation, TMNP@SR promoted the M1-to-M2 switch of macrophages to avoid continuous activation of inflammation within the degenerated disc, which prevented the apoptosis of nucleus pulposus cells. In addition, TMNP@SR relieved mechanical and thermal hyperalgesia, reduced calcitonin gene-related peptide (CGRP) and substance P (SP) expression in the dorsal root ganglion, and downregulated GFAP and c-FOS signaling in the spinal cord in the rat IDD model. In summary, TMNP@SR spontaneously inhibits the aggravation of disc inflammation to alleviate disc degeneration and reduce the ingress of sensory nerves, presenting a promising treatment strategy for LBP induced by disc degeneration.


Asunto(s)
Autofagia , Degeneración del Disco Intervertebral , Nanopartículas , Ratas Sprague-Dawley , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Animales , Autofagia/efectos de los fármacos , Nanopartículas/química , Ratas , Masculino , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Dolor de la Región Lumbar/tratamiento farmacológico , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Sirolimus/farmacología , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Núcleo Pulposo/metabolismo , Inflamación/tratamiento farmacológico , Citocinas/metabolismo , Biomimética/métodos , Modelos Animales de Enfermedad , Factor de Crecimiento Nervioso/metabolismo , Células RAW 264.7
10.
Ecotoxicol Environ Saf ; 277: 116341, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653022

RESUMEN

Infertility is a growing health concern among many couples worldwide. Men account for half of infertility cases. CatSper, a sperm-specific Ca2+ channel, is expressed on the cell membrane of mammalian sperm. CatSper plays an important role in male fertility because it facilitates the entry of Ca2+ necessary for the rapid change in sperm motility, thereby allowing it to navigate the hurdles of the female reproductive tract and successfully locate the egg. Many pollutants present in the environment have been shown to affect the functions of CatSper and sperm, which is a matter of capital importance to understanding and solving male infertility issues. Environmental pollutants can act as partial agonists or inhibitors of CatSper or exhibit a synergistic effect. In this article, we briefly describe the structure, functions, and regulatory mechanisms of CatSper, and discuss the body of literature covering the effects of environmental pollutants on CatSper.


Asunto(s)
Canales de Calcio , Contaminantes Ambientales , Infertilidad Masculina , Animales , Humanos , Masculino , Canales de Calcio/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Infertilidad Masculina/inducido químicamente , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos
11.
Phytother Res ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079890

RESUMEN

Magnoflorine (Mag), a natural alkaloid component originating from the Ranunculaceae Juss. Family, has a various of pharmacological activities. This study aimed to investigate the therapeutic effects and potential mechanism of Mag on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) based on comprehensive approaches. Therapeutic effects of Mag on 3% DSS-induced UC mice were analyzed. UHPLC-Q-TOF/MS was performed to investigate the potential metabolites and signaling pathway of Mag on DSS-induced UC. Furthermore, the predicted mRNA and protein levels of JAK2/STAT3 signaling pathway in colon tissue were verified and assessed by qRT-PCR and Western Blotting, respectively. Therapeutic effects of Mag on UC mice were presented in down-regulation serum biochemical indices, alleviating histological damage of colon tissue. Serum untargeted metabolomics analysis showed that the potential mechanism of Mag on UC is mainly associated with the regulation of six biomarkers and 11 pathways, which may be responsible for the therapeutic efficacy of UC. The "component-metabolites-targets" interactive network indicated that Mag exerts its anti-UC effect by regulating PTGS1 and PTGS2, thereby regulating arachidonic acid. Moreover, the results of qRT-PCR showed that Mag could substantially decrease the relative mRNA expression level of Hub genes. In addition, it was found that Mag could inhibit the relative mRNA and protein expression of JAK2/STAT3 signaling pathway. The present results highlighted the role of Mag ameliorated colon injury in DSS-induced UC mice by inhibiting the JAK2/STAT3 signaling pathway. These results suggest that Mag may be an effective agent for the treatment of UC.

12.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4069-4077, 2024 Aug.
Artículo en Zh | MEDLINE | ID: mdl-39307739

RESUMEN

This study investigates the therapeutic effect of hybrid exosomes loaded with sinomenine(SIN) obtained by membrane fusion of milk exosomes with liposomes in collagen-induced arthritis(CIA) rats. Exosomes were isolated from fresh bovine milk by sucrose density gradient centrifugation, while liposomes were prepared using the emulsion solvent evaporation-low temperature curing method. Hybrid exosomes were characterized after membrane fusion through co-incubation: The morphology was detected by transmission electron microscopy, the particle size and potential by nanoparticle size potentiostat, and the expressions of surface characteristic proteins CD63 and TSG101 before and after fusion by Western blot(WB). The drug loading capacity and encapsulation rate of sinomenine were measured after the loading of sinomenine on exosomes by ultrasonic method. The CIA rat model was induced by collagen antibody. The efficacy experiment consisted of the control group, model group, SIN group, SIN-liposome group, SIN-milk exosome group, SIN-hybrid exosome group and positive drug(dexamethasone) group. The changes in body mass of rats during administration were recorded. Besides, the foot swelling, immune organ index, arthritis index, microcirculation index, synovial histopathology, and serum inflammatory factor levels detected by enzyme-linked immunosorbent assay were observed for pharmacodynamical study. Under transmission electron microscopy, both hybrid exosomes and milk exosomes showed saucer-like appearance. After co-incubation, the exosome particle size increased from(97.92±3.42)nm to(132.70±4.07)nm, and the Zeta potential changed from(-2.01±0.33)mV to(-17.90±2.13)mV. WB assay showed that CD63 and TSG101 proteins were normally expressed in milk exosomes and hybrid exosomes. The encapsulation rate of milk exosomes was 31.64%±2.48%, with a drug loading of 2.35%±0.52%, while the hybrid exosomes exhibited an encapsulation rate of 48.21%±3.12% and drug loading of 3.17%±0.36%, as determined by the microplate reader. Pharmacodynamic results showed that compared with the model group, the general condition, swelling degree of foot, arthritis index and immune organ index of all drug administration groups were significantly improved(P<0.05, P<0.01); microvascular comprehensive score and vascular resistance were significantly decreased(P<0.05, P<0.01); serum levels of TNF-α, IL-1ß and IL-6 inflammatory factors were significantly decreased(P<0.01); and the lesions of synovial tissue were improved to some extent. Meanwhile, compared with the SIN group, SIN-liposome group and SIN-milk exosome group, the SIN-hybrid exosome group had a more stable and durable drug effect. The hybrid exosomes obtained by co-incubation of milk-derived exosomes with liposomes successfully improved the drug carrying capacity of exosomes and biocompatibility of liposomes. The hybrid exosomes loaded with sinomenine have good efficacy on CIA model rats, and can effectively solve the problems of TCM such as sinomenine, which have good efficacy but short biological half-life. The study provides new insights for the development of TCM and the treatment of diseases such as rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide , Exosomas , Liposomas , Leche , Morfinanos , Animales , Exosomas/química , Ratas , Liposomas/química , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Leche/química , Bovinos , Morfinanos/química , Morfinanos/administración & dosificación , Morfinanos/farmacología , Masculino , Humanos , Femenino
13.
J Cell Physiol ; 238(5): 1063-1079, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36924084

RESUMEN

Circular dorsal ruffles (CDRs) are rounded membrane ruffles induced by growth factors to function as precursors of the large-scale endocytosis called macropinocytosis. In addition to their role in cellular uptake, recent research using cell line systems has shown that CDRs/macropinocytosis regulate the canonical AKT-mTORC1 growth factor signaling pathway. However, as CDRs have not been observed in tissues, their physiological relevance has remained unclear. Here, utilizing ultrahigh-resolution scanning electron microscopy, we first report that CDRs are expressed in glomerular podocytes ex vivo and in vivo, and we visually captured the transformation process to macropinocytosis. Moreover, through biochemical and imaging analyses, we show that AKT phosphorylation localized to CDRs upstream of mTORC1 activation in podocyte cell lines and isolated glomeruli. These results demonstrate the physiological role of CDRs as signal platforms for the AKT-mTORC1 pathway in glomerular podocytes at the tissue level. As mTORC1 plays critical roles in podocyte metabolism, and aberrant activation of mTORC1 triggers podocytopathies, our results strongly suggest that targeting CDR formation could represent a potential therapeutic approach for these diseases.


Asunto(s)
Podocitos , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-akt/metabolismo , Podocitos/metabolismo , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Glomérulos Renales/metabolismo
14.
J Transl Med ; 21(1): 91, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750951

RESUMEN

BACKGROUND: Length of stay (LOS) is an important metric for evaluating the management of inpatients. This study aimed to explore the factors impacting the LOS of inpatients with type-2 diabetes mellitus (T2DM) and develop a predictive model for the early identification of inpatients with prolonged LOS. METHODS: A 13-year multicenter retrospective study was conducted on 83,776 patients with T2DM to develop and validate a clinical predictive tool for prolonged LOS. Least absolute shrinkage and selection operator regression model and multivariable logistic regression analysis were adopted to build the risk model for prolonged LOS, and a nomogram was taken to visualize the model. Furthermore, receiver operating characteristic curves, calibration curves, and decision curve analysis and clinical impact curves were used to respectively validate the discrimination, calibration, and clinical applicability of the model. RESULTS: The result showed that age, cerebral infarction, antihypertensive drug use, antiplatelet and anticoagulant use, past surgical history, past medical history, smoking, drinking, and neutrophil percentage-to-albumin ratio were closely related to the prolonged LOS. Area under the curve values of the nomogram in the training, internal validation, external validation set 1, and external validation set 2 were 0.803 (95% CI [confidence interval] 0.799-0.808), 0.794 (95% CI 0.788-0.800), 0.754 (95% CI 0.739-0.770), and 0.743 (95% CI 0.722-0.763), respectively. The calibration curves indicated that the nomogram had a strong calibration. Besides, decision curve analysis, and clinical impact curves exhibited that the nomogram had favorable clinical practical value. Besides, an online interface ( https://cytjt007.shinyapps.io/prolonged_los/ ) was developed to provide convenient access for users. CONCLUSION: In sum, the proposed model could predict the possible prolonged LOS of inpatients with T2DM and help the clinicians to improve efficiency in bed management.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Estudios Retrospectivos , Estudios de Casos y Controles , Factores de Riesgo , Albúminas
15.
Arch Biochem Biophys ; 748: 109783, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37816421

RESUMEN

PURPOSE: Long non-coding RNA urothelial cancer associated 1 (UCA1) serves as an oncogene in various cancers. However, the mechanism underlying the role of UCA1 in pancreatic cancer remains unclear. This study aimed to explore the role of UCA1 in pancreatic cancer. METHODS: The expression and prognosis of UCA1 were analyzed using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. The results were validated by immunohistochemistry (IHC) and qRT-PCR. The biofunctions of UCA1 were analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). The migration abilities and mitochondrial dynamics of PC cells were examined using the Transwell assay, mitochondrial membrane potential (MMP), and fluorescence. The mitochondrial-related protein and MAPK/ERK pathway markers were evaluated using western blotting. RESULTS: UCA1 expression was significantly higher in pancreatic cancer tissues than in normal tissues. High UCA1 expression indicated poor clinical outcomes and was associated with clinical features in patients with pancreatic cancer. Additionally, high UCA1 expression is a potential independent marker for poor prognosis. Subsequently, we demonstrated that UCA1 enhanced the migration capability, increased MMP, enhanced mitochondrial fusion, and inhibited mitochondrial autophagy in pancreatic cancer cells via the MAPK/ERK pathway. CONCLUSION: UCA1 promotes the migration by regulating the mitochondrial dynamics of pancreatic cancer cells via the MAPK/ERK pathway. Our findings suggest that UCA1 may serve as a potential biomarker in pancreatic cancer prognosis.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , ARN Largo no Codificante , Neoplasias de la Vejiga Urinaria , Humanos , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Dinámicas Mitocondriales , Neoplasias de la Vejiga Urinaria/genética , Movimiento Celular , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proliferación Celular/fisiología , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Neoplasias Pancreáticas
16.
J Pineal Res ; 75(2): e12895, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37392131

RESUMEN

Striped stem borer (SSB) is one of the most damaging pests in rice production worldwide. Previously, we preliminarily demonstrated that indica rice Jiazhe LM, an OsT5H (encoding tryptamine-5-hydroxylase) knockout mutant deficient in serotonin, had increased resistance to SSB as compared with its wildtype parent Jiazhe B. However, the full scenario of SSB resistance and the underlying mechanism remain unknown. In this study, we first demonstrated that the OsT5H knockout could generally increase rice resistance to SSB and then proved that the OsT5H knockout does not disrupt the innate defense response of rice plants to SSB infestation, that is, OsT5H knockout mutations neither had significant effect on the transcriptional response of defense genes upon SSB infestation, nor the profile of defense related metabolites and plant hormones, such as lignin, salicylic acid, jasmonic acid, and abscisic acid, nor the activity of reactive oxygen species (ROS) scavenging enzymes and the ROS contents. We then demonstrated that supplementation of serotonin promoted SSB growth and performance in artificial diet feeding experiments. We observed that SSB larvae feeding on Jiazhe B had serotonin 1.72- to 2.30-fold that of those feeding on Jiazhe LM at the whole body level, and more than 3.31 and 1.84 times in the hemolymph and head, respectively. Further studies showed that the expression of genes involved in serotonin biosynthesis and transport was ~88.1% greater in SSB larvae feeding on Jiahze LM than those feeding on Jiazhe B. These observations indicated that SSB increases serotonin synthesis when feeding on serotonin deficient rice but is unable to fully compensate the dietary serotonin deficiency. Put together, the present study strongly suggests that it is the deficiency of serotonin, not the secondary effect of OsT5H knockout on innate defense response confers the SSB resistance in rice, which implies that reducing serotonin level, particularly through inhibition of its inductive synthesis upon SSB damage, could be an efficient strategy for breeding SSB resistant varieties.


Asunto(s)
Melatonina , Oryza , Animales , Oryza/genética , Oryza/metabolismo , Serotonina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Melatonina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
Anal Bioanal Chem ; 415(18): 4353-4366, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36670192

RESUMEN

Bioanalytical and biomedical applications often require nanoparticles that exhibit narrow size distributions and biocompatibility. Here, we demonstrate how different synthesis methods affect gold nanoparticle (AuNPs) monodispersity and cytotoxicity. Using single particle inductively coupled plasma mass spectrometry (SP-ICP-MS), we found that the size distribution of AuNPs synthesized with a cetyltrimethylammonium chloride (CTAC) cap was significantly improved compared to AuNPs synthesized with citrate capping agents. We determined an up to 4× decrease in the full width at half maximum (FWHM) value of the normal distributions of AuNP diameter and up to a 12% decrease in relative standard deviation (RSD). While the CTAC-capped AuNPs exhibit narrow nanoparticle size distributions, they are cytotoxic, which limits safe and effective bioanalytical and biomedical applications. We sought to impart biocompatibility to CTAC-capped AuNPs through a PEGylation-based surface ligand exchange. We developed a unique ligand exchange method driven by physical force. We demonstrated the successful PEGylation using various PEG derivatives and used these PEGylated nanoparticles to further bioconjugate nucleic acids and peptides. Using cell viability quantification, we confirmed that the monodisperse PEGylated AuNPs were biocompatible. Our monodisperse and biocompatible nanoparticles may advance safe and effective bioanalytical and biomedical applications of nanomaterials.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Ligandos , Análisis Espectral , Cetrimonio , Polietilenglicoles/química , Tamaño de la Partícula
18.
Bioorg Chem ; 138: 106577, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37178649

RESUMEN

Protein kinases constitute the largest group within the kinase family, and mutations and translocations of protein kinases due to genetic alterations are intimately linked to the pathogenesis of numerous diseases. Bruton's tyrosine kinase (BTK) is a member of the protein kinases and plays a pivotal role in the development and function of B cells. BTK belongs to the tyrosine TEC family. The aberrant activation of BTK is closely associated with the pathogenesis of B-cell lymphoma. Consequently, BTK has always been a critical target for treating hematological malignancies. To date, two generations of small-molecule covalent irreversible BTK inhibitors have been employed to treat malignant B-cell tumors, and have exhibited clinical efficacy in hitherto refractory diseases. However, these drugs are covalent BTK inhibitors, which inevitably lead to drug resistance after prolonged use, resulting in poor tolerance in patients. The third-generation non-covalent BTK inhibitor Pirtobrutinib has obtained approval for marketing in the United States, thereby circumventing drug resistance caused by C481 mutation. Currently, enhancing safety and tolerance constitutes the primary issue in developing novel BTK inhibitors. This article systematically summarizes recently discovered covalent and non-covalent BTK inhibitors and classifies them according to their structures. This article also provides a detailed discussion of binding modes, structural features, pharmacological activities, advantages and limitations of typical compounds within each structure type, providing valuable references and insights for developing safer, more effective and more targeted BTK inhibitors in future studies.


Asunto(s)
Neoplasias , Humanos , Relación Estructura-Actividad , Agammaglobulinemia Tirosina Quinasa , Neoplasias/tratamiento farmacológico , Linfocitos B/metabolismo , Inhibidores de Proteínas Quinasas/química
19.
Dermatology ; 239(4): 533-541, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37088073

RESUMEN

Androgenetic alopecia (AGA) is the most common type of hair loss and features progressive miniaturization of hair follicles. Generally, the occurrence of AGA has long been thought to be driven by genetic and androgen predisposition. However, increasingly, data proposed ageing and AGA are intimately linked. Elevated senescent cell burden and androgen and oxidative stress-induced senescence mechanisms in ageing may be initial targets to improve AGA. This review summarizes the biological links between ageing and AGA, with special focus on cellular senescence. In addition, we discuss the potential therapeutic strategies for improving cellular senescence in AGA, such as inhibiting dermal papilla cells and hair follicle stem cells senescence driven by androgen and reactive oxygen species, removing senescent cell, and reducing senescence-associated secretory phenotype (SASP).


Asunto(s)
Alopecia , Andrógenos , Humanos , Andrógenos/metabolismo , Andrógenos/farmacología , Alopecia/genética , Folículo Piloso , Senescencia Celular/genética , Estrés Oxidativo
20.
Sleep Breath ; 27(5): 1725-1732, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36607542

RESUMEN

PURPOSE: Obstructive sleep apnea (OSA) is a sleep disorder that may lead to cognitive impairment. The primary pathophysiological feature of OSA is chronic intermittent hypoxia (CIH), but the underlying mechanisms of CIH are not known. There have been few studies on the role of ferroptosis, a novel form of programmed cell death, during CIH-induced cognitive impairment. Therefore, this paper examined ferroptosis' effect on CIH-mediated cognitive impairment. METHODS: The study randomized twenty-four Sprague-Dawley (SD) male rats to control or CIH group. CIH rats were subjected to intermittent hypoxia for 4 weeks. Rat learning and memory were analyzed by the Morris water maze (MWM) test. Alterations of hippocampal neuronal ultrastructure were observed by transmission electron microscopy (TEM). Malondialdehyde (MDA) and ferrous iron (Fe2+) levels and superoxide dismutase (SOD) and reduced glutathione (GSH) contents were determined. Ferroptosis-associated protein levels were examined by Western blotting. RESULTS: The MWM test indicated that rats in the CIH group exhibited neurocognitive impairment. TEM showed that CIH induced mitochondrial damage. Significant increases in Fe2+ and MDA levels were observed in the CIH group, and GSH and SOD levels were decreased. Expression of Acyl-CoA synthetase long-chain family member 4 (ACSL4) increased, and glutathione peroxidase 4 (GPX4) protein levels were decreased, suggesting that ferroptosis was induced in CIH model rats. The NF-E2-related factor 2 (Nrf2) protein level in the CIH group was decreased. CONCLUSION: Ferroptosis had an essential effect on CIH-mediated cognitive impairment, and it may occur via Nrf2 dysregulation. These findings lay a solid foundation for the subsequent study of OSA-associated cognitive impairment offering potential evidence for the development of therapeutic strategies.


Asunto(s)
Disfunción Cognitiva , Ferroptosis , Apnea Obstructiva del Sueño , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Factor 2 Relacionado con NF-E2/uso terapéutico , Disfunción Cognitiva/etiología , Superóxido Dismutasa , Hipoxia/metabolismo , Apnea Obstructiva del Sueño/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA