Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Stroke Cerebrovasc Dis ; : 107843, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964524

RESUMEN

OBJECTIVES: Subarachnoid hemorrhage (SAH) from spontaneous rupture of an aneurysm is a debilitating condition with high morbidity and mortality. Patients with SAH remain understudied, particularly concerning the evaluation of incidence and consequences of subsequent acute kidney injury (AKI). In this study, we aim to explore the risk factors and outcomes of AKI in patients with SAH. MATERIALS AND METHODS: International Classification of Diseases, 9th Edition and 10th Edition (ICD-10-CM) codes were used to query the National Inpatient Sample (NIS) for patients with a diagnosis of SAH between 2010-2019. Subgroup analysis was stratified by AKI diagnosis during the same hospitalization. AKI and non-AKI groups were assessed for baseline clinical characteristics, interventions, complications, and outcomes. Descriptive statistics, multivariate regressions, and propensity score-matching were performed using IBM SPSS 28. NEED TO MENTION NIH-SSS RESULTS: Of 76,553 patients diagnosed with nontraumatic SAH between 2010-2019, 10,634 (13.89%) had a comorbid diagnosis of AKI. Patients with AKI were older (p<0.01) and more often obese (p < 0.01), compared to the non-AKI group. A multivariate regression found the diagnosis of AKI to be independently correlated with poor functional outcome (p<0.001), above average length of stay (p < 0.001), and in-hospital mortality (p < 0.001) when controlling for age, SAH severity, and other comorbidities. CONCLUSIONS: This study showed significant association between AKI and adverse outcomes in SAH patients, and a correlation between AKI and heightened complication rates, poor functional outcome, extended hospital stays, and elevated mortality rates. Early detection of AKI in SAH patients is vital to enhance their chances of recovery.

2.
J Biol Chem ; 293(12): 4555-4563, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29374059

RESUMEN

Intrinsically disordered proteins (IDPs) play important roles in many biological systems. Given the vast conformational space that IDPs can explore, the thermodynamics of the interactions with their partners is closely linked to their biological functions. Intrinsically disordered regions of Phe-Gly nucleoporins (FG Nups) that contain multiple phenylalanine-glycine repeats are of particular interest, as their interactions with transport factors (TFs) underlie the paradoxically rapid yet also highly selective transport of macromolecules mediated by the nuclear pore complex. Here, we used NMR and isothermal titration calorimetry to thermodynamically characterize these multivalent interactions. These analyses revealed that a combination of low per-FG motif affinity and the enthalpy-entropy balance prevents high-avidity interaction between FG Nups and TFs, whereas the large number of FG motifs promotes frequent FG-TF contacts, resulting in enhanced selectivity. Our thermodynamic model underlines the importance of functional disorder of FG Nups. It helps explain the rapid and selective translocation of TFs through the nuclear pore complex and further expands our understanding of the mechanisms of "fuzzy" interactions involving IDPs.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Termodinámica , Transporte Activo de Núcleo Celular , Cristalografía por Rayos X , Glicina/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas de Complejo Poro Nuclear/química , Fenilalanina/química , Unión Proteica , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química
3.
PLoS One ; 14(6): e0217897, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31170242

RESUMEN

Protein-protein interactions are central to biological processes. In vitro methods to examine protein-protein interactions are generally categorized into two classes: in-solution and surface-based methods. Here, using the multivalent interactions between nucleocytoplasmic transport factors and intrinsically disordered FG repeat containing nuclear pore complex proteins as a model system, we examined the utility of three surface-based methods: atomic force microscopy, quartz crystal microbalance with dissipation, and surface plasmon resonance. Although results were comparable to those of previous reports, the apparent effect of mass transport limitations was demonstrated. Additional experiments with a loss-of-interaction FG repeat mutant variant demonstrated that the binding events that take place on surfaces can be unexpectedly complex, suggesting particular care must be exercised in interpretation of such data.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Mutación/genética , Unión Proteica , Tecnicas de Microbalanza del Cristal de Cuarzo , beta Carioferinas/metabolismo
4.
J Clin Invest ; 126(11): 4303-4318, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27721237

RESUMEN

Eccrine sweat glands are essential for sweating and thermoregulation in humans. Loss-of-function mutations in the Ca2+ release-activated Ca2+ (CRAC) channel genes ORAI1 and STIM1 abolish store-operated Ca2+ entry (SOCE), and patients with these CRAC channel mutations suffer from anhidrosis and hyperthermia at high ambient temperatures. Here we have shown that CRAC channel-deficient patients and mice with ectodermal tissue-specific deletion of Orai1 (Orai1K14Cre) or Stim1 and Stim2 (Stim1/2K14Cre) failed to sweat despite normal sweat gland development. SOCE was absent in agonist-stimulated sweat glands from Orai1K14Cre and Stim1/2K14Cre mice and human sweat gland cells lacking ORAI1 or STIM1 expression. In Orai1K14Cre mice, abolishment of SOCE was associated with impaired chloride secretion by primary murine sweat glands. In human sweat gland cells, SOCE mediated by ORAI1 was necessary for agonist-induced chloride secretion and activation of the Ca2+-activated chloride channel (CaCC) anoctamin 1 (ANO1, also known as TMEM16A). By contrast, expression of TMEM16A, the water channel aquaporin 5 (AQP5), and other regulators of sweat gland function was normal in the absence of SOCE. Our findings demonstrate that Ca2+ influx via store-operated CRAC channels is essential for CaCC activation, chloride secretion, and sweat production in humans and mice.


Asunto(s)
Señalización del Calcio/fisiología , Canales de Cloruro/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Glándulas Sudoríparas/metabolismo , Sudor/metabolismo , Animales , Anoctamina-1 , Acuaporina 5/genética , Acuaporina 5/metabolismo , Canales de Cloruro/genética , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 2/genética , Molécula de Interacción Estromal 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA