Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 17(8): e1009425, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460871

RESUMEN

Extracellular DNA (eDNA) is a major constituent of the extracellular matrix of Pseudomonas aeruginosa biofilms and its release is regulated via pseudomonas quinolone signal (PQS) dependent quorum sensing (QS). By screening a P. aeruginosa transposon library to identify factors required for DNA release, mutants with insertions in the twin-arginine translocation (Tat) pathway were identified as exhibiting reduced eDNA release, and defective biofilm architecture with enhanced susceptibility to tobramycin. P. aeruginosa tat mutants showed substantial reductions in pyocyanin, rhamnolipid and membrane vesicle (MV) production consistent with perturbation of PQS-dependent QS as demonstrated by changes in pqsA expression and 2-alkyl-4-quinolone (AQ) production. Provision of exogenous PQS to the tat mutants did not return pqsA, rhlA or phzA1 expression or pyocyanin production to wild type levels. However, transformation of the tat mutants with the AQ-independent pqs effector pqsE restored phzA1 expression and pyocyanin production. Since mutation or inhibition of Tat prevented PQS-driven auto-induction, we sought to identify the Tat substrate(s) responsible. A pqsA::lux fusion was introduced into each of 34 validated P. aeruginosa Tat substrate deletion mutants. Analysis of each mutant for reduced bioluminescence revealed that the primary signalling defect was associated with the Rieske iron-sulfur subunit of the cytochrome bc1 complex. In common with the parent strain, a Rieske mutant exhibited defective PQS signalling, AQ production, rhlA expression and eDNA release that could be restored by genetic complementation. This defect was also phenocopied by deletion of cytB or cytC1. Thus, either lack of the Rieske sub-unit or mutation of cytochrome bc1 genes results in the perturbation of PQS-dependent autoinduction resulting in eDNA deficient biofilms, reduced antibiotic tolerance and compromised virulence factor production.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Complejo III de Transporte de Electrones/metabolismo , Vesículas Extracelulares/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Quinolonas/metabolismo , Percepción de Quorum , Sistema de Translocación de Arginina Gemela/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , ADN Bacteriano/genética , Complejo III de Transporte de Electrones/genética , Regulación Bacteriana de la Expresión Génica , Glucolípidos/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Sistema de Translocación de Arginina Gemela/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
2.
Environ Microbiol ; 24(9): 4329-4339, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35352448

RESUMEN

There is currently a need to develop simple biofilm models that facilitate investigation of the architecture/biology of mature bacterial biofilms in a consistent/standardized manner given their environmental and clinical importance and the need for new anti-biofilm interventions. This study introduces a novel biofilm culture system termed the rolling biofilm bioreactor (RBB). This easily operated system allows adherent microbial cells to be repeatedly exposed to air/solid/liquid interfaces optimizing biofilm growth. The RBB was exploited to investigate biofilm formation in Acinetobacter baumannii. High levels of A. baumannii biofilm biomass reproducibly accumulate in the RBB and, importantly, undergo a maturation step to form large mushroom-shaped structures that had not been observed in other models. Based on image analysis of biofilm development and genetic manipulation, we show how N-acylhomoserine lactone-dependent quorum sensing (QS) impacts on biofilm differentiation, composition and antibiotic tolerance. Our results indicate that extracellular DNA (eDNA) is a key matrix component in mature Acinetobacter biofilms as the mushroom-like structures consist of dense cellular masses encased in an eDNA mesh. Moreover, this study reveals the contribution of QS to A. baumannii biofilm differentiation through Csu pilus assembly regulation. Understanding the mechanisms of structural development of mature biofilms helps to identify new biofilm eradication and removal strategies.


Asunto(s)
Acinetobacter baumannii , Acil-Butirolactonas , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Biopelículas , Reactores Biológicos , Percepción de Quorum
3.
Metab Eng ; 67: 262-276, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34224897

RESUMEN

Butanediols are widely used in the synthesis of polymers, specialty chemicals and important chemical intermediates. Optically pure R-form of 1,3-butanediol (1,3-BDO) is required for the synthesis of several industrial compounds and as a key intermediate of ß-lactam antibiotic production. The (R)-1,3-BDO can only be produced by application of a biocatalytic process. Cupriavidus necator H16 is an established production host for biosynthesis of biodegradable polymer poly-3-hydroxybutryate (PHB) via acetyl-CoA intermediate. Therefore, the utilisation of acetyl-CoA or its upstream precursors offers a promising strategy for engineering biosynthesis of value-added products such as (R)-1,3-BDO in this bacterium. Notably, C. necator H16 is known for its natural capacity to fix carbon dioxide (CO2) using hydrogen as an electron donor. Here, we report engineering of this facultative lithoautotrophic bacterium for heterotrophic and autotrophic production of (R)-1,3-BDO. Implementation of (R)-3-hydroxybutyraldehyde-CoA- and pyruvate-dependent biosynthetic pathways in combination with abolishing PHB biosynthesis and reducing flux through the tricarboxylic acid cycle enabled to engineer strain, which produced 2.97 g/L of (R)-1,3-BDO and achieved production rate of nearly 0.4 Cmol Cmol-1 h-1 autotrophically. This is first report of (R)-1,3-BDO production from CO2.


Asunto(s)
Cupriavidus necator , Procesos Autotróficos , Butileno Glicoles , Ciclo del Carbono , Cupriavidus necator/genética
4.
Nucleic Acids Res ; 46(13): 6823-6840, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29718466

RESUMEN

Pseudomonads typically carry multiple non-identical alleles of the post-transcriptional regulator rsmA. In Pseudomonas aeruginosa, RsmN is notable in that its structural rearrangement confers distinct and overlapping functions with RsmA. However, little is known about the specificities of RsmN for its target RNAs and overall impact on the biology of this pathogen. We purified and mapped 503 transcripts directly bound by RsmN in P. aeruginosa. About 200 of the mRNAs identified encode proteins of demonstrated function including some determining acute and chronic virulence traits. For example, RsmN reduces biofilm development both directly and indirectly via multiple pathways, involving control of Pel exopolysaccharide biosynthesis and c-di-GMP levels. The RsmN targets identified are also shared with RsmA, although deletion of rsmN generally results in less pronounced phenotypes than those observed for ΔrsmA or ΔrsmArsmNind mutants, probably as a consequence of different binding affinities. Targets newly identified for the Rsm system include the small non-coding RNA CrcZ involved in carbon catabolite repression, for which differential binding of RsmN and RsmA to specific CrcZ regions is demonstrated. The results presented here provide new insights into the intricacy of riboregulatory networks involving multiple but distinct RsmA homologues.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Alginatos/metabolismo , Proteínas Bacterianas/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Genoma Bacteriano , Polisacáridos Bacterianos/biosíntesis , Pseudomonas aeruginosa/metabolismo , ARN Pequeño no Traducido/metabolismo , Regulón , Proteínas Represoras/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo
5.
Environ Microbiol ; 20(6): 2049-2065, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29488306

RESUMEN

Surface motility and biofilm formation are behaviours which enable bacteria to infect their hosts and are controlled by different chemical signals. In the plant symbiotic alpha-proteobacterium Sinorhizobium meliloti, the lack of long-chain fatty acyl-coenzyme A synthetase activity (FadD) leads to increased surface motility, defects in biofilm development and impaired root colonization. In this study, analyses of lipid extracts and volatiles revealed that a fadD mutant accumulates 2-tridecanone (2-TDC), a methylketone (MK) known as a natural insecticide. Application of pure 2-TDC to the wild-type strain phenocopies the free-living and symbiotic behaviours of the fadD mutant. Structural features of the MK determine its ability to promote S. meliloti surface translocation, which is mainly mediated by a flagella-independent motility. Transcriptomic analyses showed that 2-TDC induces differential expression of iron uptake, redox and stress-related genes. Interestingly, this MK also influences surface motility and impairs biofilm formation in plant and animal pathogenic bacteria. Moreover, 2-TDC not only hampers alfalfa nodulation but also the development of tomato bacterial speck disease. This work assigns a new role to 2-TDC as an infochemical that affects important bacterial traits and hampers plant-bacteria interactions by interfering with microbial colonization of plant tissues.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cetonas/metabolismo , Cetonas/farmacología , Medicago sativa/microbiología , Sinorhizobium meliloti/efectos de los fármacos , Sinorhizobium meliloti/metabolismo , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Mutación , Fenotipo , Sinorhizobium meliloti/genética , Simbiosis
6.
PLoS Pathog ; 12(11): e1006029, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27851827

RESUMEN

The pqs quorum sensing (QS) system is crucial for Pseudomonas aeruginosa virulence both in vitro and in animal models of infection and is considered an ideal target for the development of anti-virulence agents. However, the precise role played by each individual component of this complex QS circuit in the control of virulence remains to be elucidated. Key components of the pqs QS system are 2-heptyl-4-hydroxyquinoline (HHQ), 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), the transcriptional regulator PqsR and the PQS-effector element PqsE. To define the individual contribution of each of these components to QS-mediated regulation, transcriptomic analyses were performed and validated on engineered P. aeruginosa strains in which the biosynthesis of 2-alkyl-4-quinolones (AQs) and expression of pqsE and pqsR have been uncoupled, facilitating the identification of the genes controlled by individual pqs system components. The results obtained demonstrate that i) the PQS biosynthetic precursor HHQ triggers a PqsR-dependent positive feedback loop that leads to the increased expression of only the pqsABCDE operon, ii) PqsE is involved in the regulation of diverse genes coding for key virulence determinants and biofilm development, iii) PQS promotes AQ biosynthesis, the expression of genes involved in the iron-starvation response and virulence factor production via PqsR-dependent and PqsR-independent pathways, and iv) HQNO does not influence transcription and hence does not function as a QS signal molecule. Overall this work has facilitated identification of the specific regulons controlled by individual pqs system components and uncovered the ability of PQS to contribute to gene regulation independent of both its ability to activate PqsR and to induce the iron-starvation response.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Pseudomonas aeruginosa/fisiología , Percepción de Quorum/fisiología , Virulencia/fisiología , 4-Quinolonas/metabolismo , Biopelículas/crecimiento & desarrollo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Transducción de Señal , Transcriptoma
7.
Appl Microbiol Biotechnol ; 102(8): 3711-3721, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29511844

RESUMEN

The antibiotic pyrrolnitrin (PRN) is a tryptophan-derived secondary metabolite that plays an important role in the biocontrol of plant diseases due to its broad-spectrum of antimicrobial activities. The PRN biosynthetic gene cluster remains to be characterised in Serratia plymuthica, though it is highly conserved in PRN-producing bacteria. To better understand PRN biosynthesis and its regulation in Serratia, the prnABCD operon from S. plymuthica G3 was cloned, sequenced and expressed in Escherichia coli DH5α. Furthermore, an engineered strain prnind which is a conditional mutant of G3 prnABCD under the control of the Ptac promoter was constructed. This mutant was able to overproduce PRN with isopropylthiogalactoside (IPTG) induction by overexpressing prnABCD, whilst behaving as a conditional mutant of G3 prnABCD in the absence of IPTG. These results confirmed that prnABCD is responsible for PRN biosynthesis in strain G3. Further experiments involving lux-/dsRed-based promoter fusions, combined with site-directed mutagenesis of the putative σS extended -10 region in the prnA promoter, and liquid chromatography-mass spectrometry (LC-MS) analysis extended our previous knowledge about G3, revealing that quorum sensing (QS) regulates PRN biosynthesis through cross talk with RpoS, which may directly activated prnABCD transcription. These findings suggest that PRN in S. plymuthica G3 is produced in a tightly controlled manner, and has diverse functions, such as modulation of cell motility, in addition to antimicrobial activities. Meanwhile, the construction of inducible mutants could be a powerful tool to improve PRN production, beyond its potential use for the investigation of the biological function of PRN.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Operón/genética , Pirrolnitrina/biosíntesis , Serratia/genética , Mutación , Percepción de Quorum/fisiología
8.
Nucleic Acids Res ; 44(4): e35, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26481354

RESUMEN

Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development.


Asunto(s)
Clonación Molecular/métodos , ADN/genética , Biblioteca de Genes , Microfluídica/métodos , Sistema Libre de Células
9.
Molecules ; 23(2)2018 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-29382099

RESUMEN

Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis, wound and nosocomial infections, posing a serious burden to public health, due to its antibiotic resistance. The P. aeruginosa Pseudomonas Quinolone System (pqs) quorum sensing system, driven by the activation of the transcriptional regulator, PqsR (MvfR) by alkylquinolone (AQ) signal molecules, is a key player in the regulation of virulence and a potential target for the development of novel antibacterial agents. In this study, we performed in silico docking analysis, coupled with screening using a P. aeruginosa mCTX::PpqsA-lux chromosomal promoter fusion, to identify a series of new PqsR antagonists. The hit compounds inhibited pyocyanin and alkylquinolone signal molecule production in P. aeruginosa PAO1-L and PA14 strains. The inhibitor Ia, which showed the highest activity in PA14, reduced biofilm formation in PAO1-L and PA14, increasing their sensitivity to tobramycin. Furthermore, the hepatic and plasma stabilities for these compounds were determined in both rat and human in vitro microsomal assays, to gain a further understanding of their therapeutic potential. This work has uncovered a new class of P. aeruginosa PqsR antagonists with potential for hit to lead optimisation in the search for quorum sensing inhibitors for future anti-infective drug discovery programs.


Asunto(s)
Antibacterianos/química , Biopelículas , Simulación del Acoplamiento Molecular , Pseudomonas aeruginosa/fisiología , Quinolonas/metabolismo , Percepción de Quorum/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Environ Microbiol ; 19(9): 3551-3566, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28677348

RESUMEN

Expression of cfcR, encoding the only GGDEF/EAL response regulator in Pseudomonas putida, is transcriptionally regulated by RpoS, ANR and FleQ, and the functionality of CfcR as a diguanylate cyclase requires the multisensor CHASE3/GAF hybrid histidine kinase named CfcA. Here an additional level of cfcR control, operating post-transcriptionally via the RNA-binding proteins RsmA, RsmE and RsmI, is unraveled. Specific binding of the three proteins to an Rsm-binding motif (5'CANGGANG3') encompassing the translational start codon of cfcR was confirmed. Although RsmA exhibited the highest binding affinity to the cfcR transcript, single deletions of rsmA, rsmE or rsmI caused minor derepression in CfcR translation compared to a ΔrsmIEA triple mutant. RsmA also showed a negative impact on c-di-GMP levels in a double mutant ΔrsmIE through the control of cfcR, which is responsible for most of the free c-di-GMP during stationary phase in static conditions. In addition, a CfcR-dependent c-di-GMP boost was observed during this stage in ΔrsmIEA confirming the negative effect of Rsm proteins on CfcR translation and explaining the increased biofilm formation in this mutant compared to the wild type. Overall, these results suggest that CfcR is a key player in biofilm formation regulation by the Rsm proteins in P. putida.


Asunto(s)
Biopelículas/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica , Pseudomonas putida/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas putida/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética
11.
BMC Microbiol ; 16(1): 155, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27430253

RESUMEN

BACKGROUND: Biofilm development, specifically the fundamentally adaptive switch from acute to chronic infection phenotypes, requires global regulators and small non-coding regulatory RNAs (sRNAs). This work utilized RNA-sequencing (RNA-seq) to detect sRNAs differentially expressed in Pseudomonas aeruginosa biofilm versus planktonic state. RESULTS: A computational algorithm was devised to detect and categorize sRNAs into 5 types: intergenic, intragenic, 5'-UTR, 3'-UTR, and antisense. Here we report a novel RsmY/RsmZ-type sRNA, termed RsmW, in P. aeruginosa up-transcribed in biofilm versus planktonic growth. RNA-Seq, 5'-RACE and Mfold predictions suggest RsmW has a secondary structure with 3 of 7 GGA motifs located on outer stem loops. Northern blot revealed two RsmW binding bands of 400 and 120 bases, suggesting RsmW is derived from the 3'-UTR of the upstream hypothetical gene, PA4570. RsmW expression is elevated in late stationary versus logarithmic growth phase in PB minimal media, at higher temperatures (37 °C versus 28 °C), and in both gacA and rhlR transposon mutants versus wild-type. RsmW specifically binds to RsmA protein in vitro and restores biofilm production and reduces swarming in an rsmY/rsmZ double mutant. PA4570 weakly resembles an RsmA/RsmN homolog having 49 % and 51 % similarity, and 16 % and 17 % identity to RsmA and RsmN amino acid sequences, respectively. PA4570 was unable to restore biofilm and swarming phenotypes in ΔrsmA deficient strains. CONCLUSION: Collectively, our study reveals an interesting theme regarding another sRNA regulator of the Rsm system and further unravels the complexities regulating adaptive responses for Pseudomonas species.


Asunto(s)
Biopelículas , Pseudomonas aeruginosa/fisiología , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Algoritmos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Cromosomas Bacterianos , Regulación Bacteriana de la Expresión Génica , Mutación , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/biosíntesis , Proteínas de Unión al ARN/biosíntesis , Activación Transcripcional , Regulación hacia Arriba , beta-Lactamasas/genética
12.
Nucleic Acids Res ; 42(11): 6811-25, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24782516

RESUMEN

CsrA/RsmA homologs are an extensive family of ribonucleic acid (RNA)-binding proteins that function as global post-transcriptional regulators controlling important cellular processes such as secondary metabolism, motility, biofilm formation and the production and secretion of virulence factors in diverse bacterial species. While direct messenger RNA binding by CsrA/RsmA has been studied in detail for some genes, it is anticipated that there are numerous additional, as yet undiscovered, direct targets that mediate its global regulation. To assist in the discovery of these targets, we propose a sequence-based approach to predict genes directly regulated by these regulators. In this work, we develop a computer code (CSRA_TARGET) implementing this approach, which leads to predictions for several novel targets in Escherichia coli and Pseudomonas aeruginosa. The predicted targets in other bacteria, specifically Salmonella enterica serovar Typhimurium, Pectobacterium carotovorum and Legionella pneumophila, also include global regulators that control virulence in these pathogens, unraveling intricate indirect regulatory roles for CsrA/RsmA. We have experimentally validated four predicted RsmA targets in P. aeruginosa. The sequence-based approach developed in this work can thus lead to several testable predictions for direct targets of CsrA homologs, thereby complementing and accelerating efforts to unravel global regulation by this important family of proteins.


Asunto(s)
Algoritmos , Pseudomonas aeruginosa/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Análisis de Secuencia de ARN/métodos , Sitios de Unión , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Pseudomonas aeruginosa/metabolismo , ARN Mensajero/química
13.
Environ Microbiol ; 17(11): 4352-65, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25809238

RESUMEN

In Pseudomonas aeruginosa, quorum sensing (QS) regulates the production of secondary metabolites, many of which are antimicrobials that impact on polymicrobial community composition. Consequently, quenching QS modulates the environmental impact of P. aeruginosa. To identify bacteria capable of inactivating the QS signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), a minimal medium containing PQS as the sole carbon source was used to enrich a Malaysian rainforest soil sample. This yielded an Achromobacter xylosoxidans strain (Q19) that inactivated PQS, yielding a new fluorescent compound (I-PQS) confirmed as PQS-derived using deuterated PQS. The I-PQS structure was elucidated using mass spectrometry and nuclear magnetic resonance spectroscopy as 2-heptyl-2-hydroxy-1,2-dihydroquinoline-3,4-dione (HHQD). Achromobacter xylosoxidans Q19 oxidized PQS congeners with alkyl chains ranging from C1 to C5 and also N-methyl PQS, yielding the corresponding 2-hydroxy-1,2-dihydroquinoline-3,4-diones, but was unable to inactivate the PQS precursor HHQ. This indicates that the hydroxyl group at position 3 in PQS is essential and that A. xylosoxidans inactivates PQS via a pathway involving the incorporation of oxygen at C2 of the heterocyclic ring. The conversion of PQS to HHQD also occurred on incubation with 12/17 A. xylosoxidans strains recovered from cystic fibrosis patients, with P. aeruginosa and with Arthrobacter, suggesting that formation of hydroxylated PQS may be a common mechanism of inactivation.


Asunto(s)
Achromobacter denitrificans/metabolismo , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Percepción de Quorum/fisiología , Metabolismo Secundario/fisiología , Datos de Secuencia Molecular , Oxidación-Reducción , Bosque Lluvioso , Transducción de Señal , Suelo/química , Microbiología del Suelo
14.
PLoS Pathog ; 9(7): e1003508, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935486

RESUMEN

Bacterial populations co-ordinate gene expression collectively through quorum sensing (QS), a cell-to-cell communication mechanism employing diffusible signal molecules. The LysR-type transcriptional regulator (LTTR) protein PqsR (MvfR) is a key component of alkyl-quinolone (AQ)-dependent QS in Pseudomonas aeruginosa. PqsR is activated by 2-alkyl-4-quinolones including the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone), its precursor 2-heptyl-4-hydroxyquinoline (HHQ) and their C9 congeners, 2-nonyl-3-hydroxy-4(1H)-quinolone (C9-PQS) and 2-nonyl-4-hydroxyquinoline (NHQ). These drive the autoinduction of AQ biosynthesis and the up-regulation of key virulence determinants as a function of bacterial population density. Consequently, PqsR constitutes a potential target for novel antibacterial agents which attenuate infection through the blockade of virulence. Here we present the crystal structures of the PqsR co-inducer binding domain (CBD) and a complex with the native agonist NHQ. We show that the structure of the PqsR CBD has an unusually large ligand-binding pocket in which a native AQ agonist is stabilized entirely by hydrophobic interactions. Through a ligand-based design strategy we synthesized and evaluated a series of 50 AQ and novel quinazolinone (QZN) analogues and measured the impact on AQ biosynthesis, virulence gene expression and biofilm development. The simple exchange of two isosteres (OH for NH2) switches a QZN agonist to an antagonist with a concomitant impact on the induction of bacterial virulence factor production. We also determined the complex crystal structure of a QZN antagonist bound to PqsR revealing a similar orientation in the ligand binding pocket to the native agonist NHQ. This structure represents the first description of an LTTR-antagonist complex. Overall these studies present novel insights into LTTR ligand binding and ligand-based drug design and provide a chemical scaffold for further anti-P. aeruginosa virulence drug development by targeting the AQ receptor PqsR.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/fisiología , Quinolonas/metabolismo , Percepción de Quorum , Transducción de Señal , Factores de Transcripción/metabolismo , Alquilación , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/agonistas , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Sitios de Unión , Biopelículas/efectos de los fármacos , Diseño de Fármacos , Regulación Bacteriana de la Expresión Génica , Ligandos , Conformación Molecular , Proteínas Mutantes/agonistas , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Péptidos/agonistas , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Quinolonas/química , Quinolonas/farmacología , Percepción de Quorum/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Factores de Transcripción/agonistas , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Virulencia/efectos de los fármacos
15.
Environ Microbiol ; 16(3): 676-88, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23796404

RESUMEN

Pseudomonas aeruginosa is a versatile bacterial pathogen capable of occupying diverse ecological niches. To cope with iron limitation, P. aeruginosa secretes two siderophores, pyoverdine and pyochelin, whose ability to deliver iron to the cell is crucial for biofilm formation and pathogenicity. In this study, we describe a link between iron uptake and the Gac/Rsm system, a conserved signal transducing pathway of P. aeruginosa that controls the production of extracellular products and virulence factors, as well as the switch from planktonic to biofilm lifestyle. We have observed that pyoverdine and pyochelin production in P. aeruginosa is strongly dependent on the activation state of the Gac/Rsm pathway, which controls siderophore regulatory and biosynthetic genes at the transcriptional level, in a manner that does not involve regulation of ferric uptake regulator (Fur) expression. Gac/Rsm-mediated regulation of iron uptake genes appears to be conserved in different P. aeruginosa strains. Further experiments led to propose that the Gac/Rsm system regulates siderophore production through modulation of the intracellular levels of the second messenger c-di-GMP, indicating that the c-di-GMP and the Gac/Rsm regulatory networks essential for biofilm formation can also coordinately control iron uptake in P. aeruginosa.


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica/genética , Hierro/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Bacterianas/genética , GMP Cíclico/metabolismo , Oligopéptidos/metabolismo , Fenoles/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Represoras/metabolismo , Sideróforos/genética , Sideróforos/metabolismo , Factor sigma/genética , Tiazoles/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
16.
PLoS Pathog ; 8(8): e1002854, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22927813

RESUMEN

The opportunistic human pathogen, Pseudomonas aeruginosa, is a major cause of infections in chronic wounds, burns and the lungs of cystic fibrosis patients. The P. aeruginosa genome encodes at least three proteins exhibiting the characteristic three domain structure of autotransporters, but much remains to be understood about the functions of these three proteins and their role in pathogenicity. Autotransporters are the largest family of secreted proteins in Gram-negative bacteria, and those characterised are virulence factors. Here, we demonstrate that the PA0328 autotransporter is a cell-surface tethered, arginine-specific aminopeptidase, and have defined its active site by site directed mutagenesis. Hence, we have assigned PA0328 with the name AaaA, for arginine-specific autotransporter of P. aeruginosa. We show that AaaA provides a fitness advantage in environments where the sole source of nitrogen is peptides with an aminoterminal arginine, and that this could be important for establishing an infection, as the lack of AaaA led to attenuation in a mouse chronic wound infection which correlated with lower levels of the cytokines TNFα, IL-1α, KC and COX-2. Consequently AaaA is an important virulence factor playing a significant role in the successful establishment of P. aeruginosa infections.


Asunto(s)
Aminopeptidasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Infecciones por Pseudomonas/enzimología , Pseudomonas aeruginosa/patogenicidad , Factores de Virulencia/metabolismo , Infección de Heridas/enzimología , Aminopeptidasas/genética , Animales , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Enfermedad Crónica , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Péptidos/metabolismo , Infecciones por Pseudomonas/genética , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Factores de Virulencia/genética , Infección de Heridas/genética , Infección de Heridas/microbiología
17.
J Med Chem ; 67(2): 1008-1023, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38170170

RESUMEN

Pseudomonas aeruginosa is one of the top priority pathogens that requires immediate attention according to the World Health Organisation (WHO). Due to the alarming shortage of novel antimicrobials, targeting quorum sensing (QS), a bacterial cell to cell signaling system controlling virulence, has emerged as a promising approach as an antibiotic adjuvant therapy. Interference with the pqs system, one of three QS systems in P. aeruginosa, results in reduction of bacterial virulence gene expression and biofilm maturation. Herein, we report a hit to lead process to fine-tune the potency of our previously reported inhibitor 1 (IC50 3.2 µM in P. aeruginosa PAO1-L), which led to the discovery of 2-(4-(3-((6-chloro-1-isopropyl-1H-benzo[d]imidazol-2-yl)amino)-2-hydroxypropoxy)phenyl)acetonitrile (6f) as a potent PqsR antagonist. Compound 6f inhibited the PqsR-controlled PpqsA-lux transcriptional reporter fusion in P. aeruginosa at low submicromolar concentrations. Moreover, 6f showed improved efficacy against P. aeruginosa CF isolates with significant inhibition of pyocyanin, 2-alkyl-4(1H)-quinolones production.


Asunto(s)
Infecciones por Pseudomonas , Quinolonas , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Percepción de Quorum , Biopelículas , Quinolonas/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/metabolismo , Imidazoles/farmacología , Imidazoles/uso terapéutico , Imidazoles/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas , Factores de Virulencia
18.
Nat Commun ; 15(1): 206, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182559

RESUMEN

Sharing of genetic elements among different pathogens and commensals inhabiting same hosts and environments has significant implications for antimicrobial resistance (AMR), especially in settings with high antimicrobial exposure. We analysed 661 Escherichia coli and Salmonella enterica isolates collected within and across hosts and environments, in 10 Chinese chicken farms over 2.5 years using data-mining methods. Most isolates within same hosts possessed the same clinically relevant AMR-carrying mobile genetic elements (plasmids: 70.6%, transposons: 78%), which also showed recent common evolution. Supervised machine learning classifiers revealed known and novel AMR-associated mutations and genes underlying resistance to 28 antimicrobials, primarily associated with resistance in E. coli and susceptibility in S. enterica. Many were essential and affected same metabolic processes in both species, albeit with varying degrees of phylogenetic penetration. Multi-modal strategies are crucial to investigate the interplay of mobilome, resistance and metabolism in cohabiting bacteria, especially in ecological settings where community-driven resistance selection occurs.


Asunto(s)
Antiinfecciosos , Salmonella enterica , Animales , Granjas , Pollos , Escherichia coli/genética , Filogenia , China/epidemiología , Salmonella enterica/genética
19.
Front Cell Infect Microbiol ; 13: 1183681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305419

RESUMEN

Pseudomonas aeruginosa is a model quorum sensing (QS) pathogen with three interconnected QS circuits that control the production of virulence factors and antibiotic tolerant biofilms. The pqs QS system of P. aeruginosa is responsible for the biosynthesis of diverse 2-alkyl-4-quinolones (AQs), of which 2-heptyl-4-hydroxyquinoline (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) function as QS signal molecules. Transcriptomic analyses revealed that HHQ and PQS influenced the expression of multiple genes via PqsR-dependent and -independent pathways whereas 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) had no effect on P. aeruginosa transcriptome. HQNO is a cytochrome bc 1 inhibitor that causes P. aeruginosa programmed cell death and autolysis. However, P. aeruginosa pqsL mutants unable to synthesize HQNO undergo autolysis when grown as colony biofilms. The mechanism by which such autolysis occurs is not understood. Through the generation and phenotypic characterization of multiple P. aeruginosa PAO1 mutants producing altered levels of AQs in different combinations, we demonstrate that mutation of pqsL results in the accumulation of HHQ which in turn leads to Pf4 prophage activation and consequently autolysis. Notably, the effect of HHQ on Pf4 activation is not mediated via its cognate receptor PqsR. These data indicate that the synthesis of HQNO in PAO1 limits HHQ-induced autolysis mediated by Pf4 in colony biofilms. A similar phenomenon is shown to occur in P. aeruginosa cystic fibrosis (CF) isolates, in which the autolytic phenotype can be abrogated by ectopic expression of pqsL.


Asunto(s)
Quinolonas , Humanos , Quinolonas/farmacología , Percepción de Quorum , Pseudomonas aeruginosa/genética , Profagos , Biopelículas , Autólisis
20.
mBio ; : e0203923, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843294

RESUMEN

In its canonical interpretation, quorum sensing (QS) allows single cells in a bacterial population to synchronize gene expression and hence perform specific tasks collectively once the quorum cell density is reached. However, growing evidence in different bacterial species indicates that considerable cell-to-cell variation in the QS activation state occurs during growth, often resulting in coexisting subpopulations of cells in which QS is active (quorate cells) or inactive (non-quorate cells). Heterogeneity has been observed in the las QS system of the opportunistic pathogen Pseudomonas aeruginosa. However, the molecular mechanisms underlying this phenomenon have not yet been defined. The las QS system consists of an incoherent feedforward loop in which the LasR transcriptional regulator activates the expression of the lasI synthase gene and rsaL, coding for the lasI transcriptional repressor RsaL. Here, single-cell-level gene expression analyses performed in ad hoc engineered biosensor strains and deletion mutants revealed that direct binding of RsaL to the lasI promoter region increases heterogeneous activation of the las QS system. Experiments performed with a dual-fluorescence reporter system showed that the LasR-dependent expression of lasI and rsaL does not correlate in single cells, indicating that RsaL acts as a brake that stochastically limits the transition of non-quorate cells to the quorate state in a subpopulation of cells expressing high levels of this negative regulator. Interestingly, the rhl QS system that is not controlled by an analogous RsaL protein showed higher homogeneity with respect to the las system. IMPORTANCE Single-cell analyses can reveal that despite experiencing identical physico-chemical conditions, individual bacterial cells within a monoclonal population may exhibit variations in gene expression. Such phenotypic heterogeneity has been described for several aspects of bacterial physiology, including QS activation. This study demonstrates that the transition of non-quorate cells to the quorate state is a graded process that does not occur at a specific cell density and that subpopulations of non-quorate cells also persist at high cell density. Here, we provide a mechanistic explanation for this phenomenon, showing that a negative feedback regulatory loop integrated into the las system has a pivotal role in promoting cell-to-cell variation in the QS activation state and in limiting the transition of non-quorate cells to the quorate state in P. aeruginosa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA