Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 602(8): 1551-1564, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36876504

RESUMEN

The Ca2+ ion is a universal second messenger involved in many vital physiological functions including cell migration and development. To fulfil these tasks the cytosolic Ca2+ concentration is tightly controlled, and this involves an intricate functional balance between a variety of channels and pumps of the Ca2+ signalling machinery. Among these proteins, plasma membrane Ca2+ ATPases (PMCAs) represent the major high-affinity Ca2+ extrusion systems in the cell membrane that are effective in maintaining free Ca2+ concentration at exceedingly low cytosolic levels, which is essential for normal cell function. An imbalance in Ca2+ signalling can have pathogenic consequences including cancer and metastasis. Recent studies have highlighted the role of PMCAs in cancer progression and have shown that a particular variant, PMCA4b, is downregulated in certain cancer types, causing delayed attenuation of the Ca2+ signal. It has also been shown that loss of PMCA4b leads to increased migration and metastasis of melanoma and gastric cancer cells. In contrast, an increased PMCA4 expression has been reported in pancreatic ductal adenocarcinoma that coincided with increased cell migration and shorter patient survival, suggesting distinct roles of PMCA4b in various tumour types and/or different stages of tumour development. The recently discovered interaction of PMCAs with basigin, an extracellular matrix metalloproteinase inducer, may provide further insights into our understanding of the specific roles of PMCA4b in tumour progression and cancer metastasis.

2.
Br J Cancer ; 130(6): 1059-1072, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38278976

RESUMEN

BACKGROUND: Inhibition of mutant KRAS challenged cancer research for decades. Recently, allele-specific inhibitors were approved for the treatment of KRAS-G12C mutant lung cancer. However, de novo and acquired resistance limit their efficacy and several combinations are in clinical development. Our study shows the potential of combining G12C inhibitors with farnesyl-transferase inhibitors. METHODS: Combinations of clinically approved farnesyl-transferase inhibitors and KRAS G12C inhibitors are tested on human lung, colorectal and pancreatic adenocarcinoma cells in vitro in 2D, 3D and subcutaneous xenograft models of lung adenocarcinoma. Treatment effects on migration, proliferation, apoptosis, farnesylation and RAS signaling were measured by histopathological analyses, videomicroscopy, cell cycle analyses, immunoblot, immunofluorescence and RAS pulldown. RESULTS: Combination of tipifarnib with sotorasib shows synergistic inhibitory effects on lung adenocarcinoma cells in vitro in 2D and 3D. Mechanistically, we present antiproliferative effect of the combination and interference with compensatory HRAS activation and RHEB and lamin farnesylation. Enhanced efficacy of sotorasib in combination with tipifarnib is recapitulated in the subcutaneous xenograft model of lung adenocarcinoma. Finally, combination of additional KRAS G1C and farnesyl-transferase inhibitors also shows synergism in lung, colorectal and pancreatic adenocarcinoma cellular models. DISCUSSION: Our findings warrant the clinical exploration of KRAS-G12C inhibitors in combination with farnesyl-transferase inhibitors.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Colorrectales , Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Animales , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Transferasas , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Mutación
3.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35328746

RESUMEN

PMCA4 is a critical regulator of Ca2+ homeostasis in mammalian cells. While its biological and prognostic relevance in several cancer types has already been demonstrated, only preclinical investigations suggested a metastasis suppressor function in melanoma. Therefore, we studied the expression pattern of PMCA4 in human skin, nevus, as well as in primary and metastatic melanoma using immunohistochemistry. Furthermore, we analyzed the prognostic power of PMCA4 mRNA levels in cutaneous melanoma both at the non-metastatic stage as well as after PD-1 blockade in advanced disease. PMCA4 localizes to the plasma membrane in a differentiation dependent manner in human skin and mucosa, while nevus cells showed no plasma membrane staining. In contrast, primary cutaneous, choroidal and conjunctival melanoma cells showed specific plasma membrane localization of PMCA4 with a wide range of intensities. Analyzing the TCGA cohort, PMCA4 mRNA levels showed a gender specific prognostic impact in stage I-III melanoma. Female patients with high transcript levels had a significantly longer progression-free survival. Melanoma cell specific PMCA4 protein expression is associated with anaplasticity in melanoma lung metastasis but had no impact on survival after lung metastasectomy. Importantly, high PMCA4 transcript levels derived from RNA-seq of cutaneous melanoma are associated with significantly longer overall survival after PD-1 blockade. In summary, we demonstrated that human melanoma cells express PMCA4 and PMCA4 transcript levels carry prognostic information in a gender specific manner.


Asunto(s)
Melanoma , Nevo , Neoplasias Cutáneas , Animales , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico , Mamíferos/metabolismo , Melanoma/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Pronóstico , Receptor de Muerte Celular Programada 1/metabolismo , ARN Mensajero , Neoplasias Cutáneas/genética , Melanoma Cutáneo Maligno
4.
Adv Exp Med Biol ; 1131: 93-129, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31646508

RESUMEN

Plasma membrane Ca2+ transport ATPases (PMCA1-4, ATP2B1-4) are responsible for removing excess Ca2+ from the cell in order to keep the cytosolic Ca2+ ion concentration at the low level essential for normal cell function. While these pumps take care of cellular Ca2+ homeostasis they also change the duration and amplitude of the Ca2+ signal and can create Ca2+ gradients across the cell. This is accomplished by generating more than twenty PMCA variants each having the character - fast or slow response, long or short memory, distinct interaction partners and localization signals - that meets the specific needs of the particular cell-type in which they are expressed. It has become apparent that these pumps are essential to normal tissue development and their malfunctioning can be linked to different pathological conditions such as certain types of neurodegenerative and heart diseases, hearing loss and cancer. In this chapter we summarize the complexity of PMCA regulation and function under normal and pathological conditions with particular attention to recent developments of the field.


Asunto(s)
Membrana Celular , ATPasas Transportadoras de Calcio de la Membrana Plasmática , Animales , Membrana Celular/enzimología , Membrana Celular/patología , Citosol/metabolismo , Homeostasis/fisiología , Humanos , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo
5.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081092

RESUMEN

The RAS/RAF and PI3K/Akt pathways play a key regulatory role in cancer and are often hit by oncogenic mutations. Despite molecular targeting, the long-term success of monotherapy is often hampered by de novo or acquired resistance. In the case of concurrent mutations in both pathways, horizontal combination could be a reasonable approach. In our study, we investigated the MEK inhibitor selumetinib and PI3K/mTOR dual inhibitor BEZ235 alone and in combination in BRAF-only mutant and BRAF + PI3K/PTEN double mutant cancer cells using short- and long-term 2D viability assays, spheroid assays, and immunoblots. In the 2D assays, selumetinib was more effective on BRAF-only mutant lines when compared to BRAF + PI3K/PTEN double mutants. Furthermore, combination therapy had an additive effect in most of the lines while synergism was observed in two of the double mutants. Importantly, in the SW1417 BRAF + PI3K double mutant cells, synergism was also confirmed in the spheroid and in the in vivo model. Mechanistically, p-Akt level decreased only in the SW1417 cell line after combination treatment. In conclusion, the presence of concurrent mutations alone did not predict a stronger response to combination treatment. Therefore, additional investigations are warranted to identify predictive factors that can select patients who can benefit from the horizontal combinational inhibition of these two pathways.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Melanoma/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Antineoplásicos/farmacología , Bencimidazoles/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Humanos , Imidazoles/farmacología , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/genética , Melanoma/metabolismo , Ratones , Ratones Desnudos , Ratones SCID , Mutación , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Esferoides Celulares/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética
6.
Int J Mol Sci ; 20(19)2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31623406

RESUMEN

Malignant melanoma is one of the most metastatic cancer types, and despite recent success with novel treatment strategies, there is still a group of patients who do not respond to any therapies. Earlier, the prenylation inhibitor hydrophilic bisphosphonate zoledronic acid (ZA) was found to inhibit melanoma growth in vitro, but only a weaker effect was observed in vivo due to its hydrophilic properties. Recently, lipophilic bisphosphonates (such as BPH1222) were developed. Accordingly, for the first time, we compared the effect of BPH1222 to ZA in eight melanoma lines using viability, cell-cycle, clonogenic and spheroid assays, videomicroscopy, immunoblot, and xenograft experiments. Based on 2D and spheroid assays, the majority of cell lines were more sensitive to BPH. The activation of Akt and S6 proteins, but not Erk, was inhibited by BPH. Additionally, BPH had a stronger apoptotic effect than ZA, and the changes of Rheb showed a correlation with apoptosis. In vitro, only M24met cells were more sensitive to ZA than to BPH; however, in vivo growth of M24met was inhibited more strongly by BPH. Here, we present that lipophilic BPH is more effective on melanoma cells than ZA and identify the PI3K pathway, particularly Rheb as an important mediator of growth inhibition.


Asunto(s)
Antineoplásicos/farmacología , Conservadores de la Densidad Ósea/farmacología , Difosfonatos/farmacología , Melanoma/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Biomarcadores , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Melanoma/tratamiento farmacológico , Melanoma/etiología , Melanoma/patología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
BMC Cancer ; 18(1): 1029, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30352569

RESUMEN

BACKGROUND: Remodeling of Ca2+ signaling is an important step in cancer progression, and altered expression of members of the Ca2+ signaling toolkit including the plasma membrane Ca2+ ATPases (PMCA proteins encoded by ATP2B genes) is common in tumors. METHODS: In this study PMCAs were examined in breast cancer datasets and in a variety of breast cancer cell lines representing different subtypes. We investigated how estrogen receptor alpha (ER-α) and histone deacetylase (HDAC) inhibitors regulate the expression of these pumps. RESULTS: Three distinct datasets displayed significantly lower ATP2B4 mRNA expression in invasive breast cancer tissue samples compared to normal breast tissue, whereas the expression of ATP2B1 and ATP2B2 was not altered. Studying the protein expression profiles of Ca2+ pumps in a variety of breast cancer cell lines revealed low PMCA4b expression in the ER-α positive cells, and its marked upregulation upon HDAC inhibitor treatments. PMCA4b expression was also positively regulated by the ER-α pathway in MCF-7 cells that led to enhanced Ca2+ extrusion capacity in response to 17ß-estradiol (E2) treatment. E2-induced PMCA4b expression was further augmented by HDAC inhibitors. Surprisingly, E2 did not affect the expression of PMCA4b in other ER-α positive cells ZR-75-1, T-47D and BT-474. These findings were in good accordance with ChIP-seq data analysis that revealed an ER-α binding site in the ATP2B4 gene in MCF-7 cells but not in other ER-α positive tumor cells. In the triple negative cells PMCA4b expression was relatively high, and the effect of HDAC inhibitor treatment was less pronounced as compared to that of the ER-α positive cells. Although, the expression of PMCA4b was relatively high in the triple negative cells, a fraction of the protein was found in intracellular compartments that could interfere with the cellular function of the protein. CONCLUSIONS: Our results suggest that the expression of Ca2+ pumps is highly regulated in breast cancer cells in a subtype specific manner. Our results suggest that hormonal imbalances, epigenetic modifications and impaired protein trafficking could interfere with the expression and cellular function of PMCA4b in the course of breast cancer progression.


Asunto(s)
Neoplasias de la Mama/enzimología , Señalización del Calcio/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Neoplasias de la Mama/patología , Señalización del Calcio/genética , Línea Celular Tumoral , Conjuntos de Datos como Asunto , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor alfa de Estrógeno/genética , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética
8.
Biochim Biophys Acta ; 1863(6 Pt B): 1351-63, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26707182

RESUMEN

Plasma membrane Ca(2+) ATPases (PMCAs) are intimately involved in the control of intracellular Ca(2+) concentration. They reduce Ca(2+) in the cytosol not only by direct ejection, but also by controlling the formation of inositol-1,4,5-trisphosphate and decreasing Ca(2+) release from the endoplasmic reticulum Ca(2+) pool. In mammals four genes (PMCA1-4) are expressed, and alternative RNA splicing generates more than twenty variants. The variants differ in their regulatory characteristics. They localize into highly specialized membrane compartments and respond to the incoming Ca(2+) with distinct temporal resolution. The expression pattern of variants depends on cell type; a change in this pattern can result in perturbed Ca(2+) homeostasis and thus altered cell function. Indeed, PMCAs undergo remarkable changes in their expression pattern during tumorigenesis that might significantly contribute to the unbalanced Ca(2+) homeostasis of cancer cells. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Membrana Celular/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Animales , Homeostasis , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética
9.
Int J Cancer ; 140(12): 2758-2770, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27813079

RESUMEN

Oncogenic mutations of BRAF lead to constitutive ERK activity that supports melanoma cell growth and survival. While Ca2+ signaling is a well-known regulator of tumor progression, the crosstalk between Ca2+ signaling and the Ras-BRAF-MEK-ERK pathway is much less explored. Here we show that in BRAF mutant melanoma cells the abundance of the plasma membrane Ca2+ ATPase isoform 4b (PMCA4b, ATP2B4) is low at baseline but markedly elevated by treatment with the mutant BRAF specific inhibitor vemurafenib. In line with these findings gene expression microarray data also shows decreased PMCA4b expression in cutaneous melanoma when compared to benign nevi. The MEK inhibitor selumetinib-similarly to that of the BRAF-specific inhibitor-also increases PMCA4b levels in both BRAF and NRAS mutant melanoma cells suggesting that the MAPK pathway is involved in the regulation of PMCA4b expression. The increased abundance of PMCA4b in the plasma membrane enhances [Ca2+ ]i clearance from cells after Ca2+ entry. Moreover we show that both vemurafenib treatment and PMCA4b overexpression induce marked inhibition of migration of BRAF mutant melanoma cells. Importantly, reduced migration of PMCA4b expressing BRAF mutant cells is associated with a marked decrease in their metastatic potential in vivo. Taken together, our data reveal an important crosstalk between Ca2+ signaling and the MAPK pathway through the regulation of PMCA4b expression and suggest that PMCA4b is a previously unrecognized metastasis suppressor.


Asunto(s)
Movimiento Celular/genética , Melanoma/genética , Mutación , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética , Animales , Western Blotting , Calcio/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Indoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/metabolismo , Melanoma/patología , Ratones SCID , Microscopía Confocal , Metástasis de la Neoplasia , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Sulfonamidas/farmacología , Trasplante Heterólogo , Vemurafenib
10.
J Cell Sci ; 127(Pt 1): 72-84, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24198396

RESUMEN

Plasma membrane Ca(2+) ATPases (PMCAs, also known as ATP2B1-ATP2B4) are known targets of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], but if and how they control the PtdIns(4,5)P2 pool has not been considered. We demonstrate here that PMCAs protect PtdIns(4,5)P2 in the plasma membrane from hydrolysis by phospholipase C (PLC). Comparison of active and inactive PMCAs indicates that the protection operates by two mechanisms; one requiring active PMCAs, the other not. It appears that the mechanism requiring activity is the removal of the Ca(2+) required for sustained PLC activity, whereas the mechanism not requiring activity is PtdIns(4,5)P2 binding. We show that in PMCA overexpressing cells, PtdIns(4,5)P2 binding can lead to less inositol 1,4,5-triphosphate (InsP3) and diminished Ca(2+) release from intracellular Ca(2+) pools. Inspection of a homology model of PMCA suggests that PMCAs have a conserved cluster of basic residues forming a 'blue collar' at the interface between the membrane core and the cytoplasmic domains. By molecular dynamics simulation, we found that the blue collar forms four binding pockets for the phosphorylated inositol head group of PtdIns(4,5)P2; these pockets bind PtdIns(4,5)P2 strongly and frequently. Our studies suggest that by having the ability to bind PtdIns(4,5)P2, PMCAs can control the accessibility of PtdIns(4,5)P2 for PLC and other PtdIns(4,5)P2-mediated processes.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasas de Tipo C/metabolismo , Animales , Señalización del Calcio , ATPasas Transportadoras de Calcio/química , ATPasas Transportadoras de Calcio/genética , Membrana Celular/química , Expresión Génica , Regulación de la Expresión Génica , Células HeLa , Humanos , Hidrólisis , Inositol 1,4,5-Trifosfato/química , Transporte Iónico , Simulación de Dinámica Molecular , Fosfatidilinositol 4,5-Difosfato/química , Unión Proteica , Conejos , Homología de Secuencia de Aminoácido , Transducción de Señal , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/genética
11.
Biochim Biophys Acta ; 1833(12): 2561-2572, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23830917

RESUMEN

Recent evidences show that the localization of different plasma membrane Ca(2+) ATPases (PMCAs) is regulated in various complex, cell type-specific ways. Here we show that in low-density epithelial and endothelial cells PMCA4b localized mostly in intracellular compartments and its plasma membrane localization was enhanced upon increasing density of cells. In good correlation with the enhanced plasma membrane localization a significantly more efficient Ca(2+) clearance was observed in confluent versus non-confluent HeLa cell cultures expressing mCherry-PMCA4b. We analyzed the subcellular localization and function of various C-terminally truncated PMCA4b variants and found that a truncated mutant PMCA4b-ct24 was mostly intracellular while another mutant, PMCA4b-ct48, localized more to the plasma membrane, indicating that a protein sequence corresponding to amino acid residues 1158-1181 contained a signal responsible for the intracellular retention of PMCA4b in non-confluent cultures. Alteration of three leucines to alanines at positions 1167-1169 resulted in enhanced cell surface expression and an appropriate Ca(2+) transport activity of both wild type and truncated pumps, suggesting that the di-leucine-like motif (1167)LLL was crucial in targeting PMCA4b. Furthermore, upon loss of cell-cell contact by extracellular Ca(2+) removal, the wild-type pump was translocated to the early endosomal compartment. Targeting PMCA4b to early endosomes was diminished by the L(1167-69)A mutation, and the mutant pump accumulated in long tubular cytosolic structures. In summary, we report a di-leucine-like internalization signal at the C-tail of PMCA4b and suggest an internalization-mediated loss of function of the pump upon low degree of cell-cell contact.


Asunto(s)
Membrana Celular/enzimología , Leucina/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/química , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Asparagina/metabolismo , Calcio/metabolismo , Compartimento Celular , Recuento de Células , Perros , Dinaminas/metabolismo , Endocitosis , Endosomas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Lisina/metabolismo , Células de Riñón Canino Madin Darby , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación/genética , Señales de Clasificación de Proteína , Transporte de Proteínas , Alineación de Secuencia , Relación Estructura-Actividad , Fracciones Subcelulares/metabolismo
12.
Lung Cancer ; 178: 237-246, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36907051

RESUMEN

OBJECTIVES: Malignant pleural mesothelioma (MPM) is an aggressive cancer which at large is not amenable to curative surgery. Despite the recent approval of immune checkpoint inhibitor therapy, the response rates and survival following systemic therapy is still limited. Sacituzumab govitecan is an antibody-drug conjugate targeting the topoisomerase I inhibitor SN38 to trophoblast cell-surface antigen 2 (TROP-2)-positive cells. Here we have explored the therapeutic potential of sacituzumab govitecan in MPM models. MATERIALS AND METHODS: TROP2 expression was analyzed in a panel of two well established and 15 pleural effusion derived novel lines by RT-QPCR and immunoblotting, TROP2 membrane-localization was studied by flow cytometry and immunohistochemistry. Cultured mesothelial cells and pneumothorax pleura served as controls. The sensitivity of MPM cell lines to irinotecan and SN38 was studied using cell viability, cell cycle, apoptosis and DNA damage assays. Drug sensitivity of cell lines was correlated with RNA expression of DNA repair genes. Drug sensitivity was defined as an IC50 below 5 nM in the cell viability assay. RESULTS: TROP2 expression was detected at RNA and protein level in 6 of the 17 MPM cell lines, but not in in cultured mesothelial control cells or in the mesothelial layer of the pleura. TROP2 was detectable on the cell membrane in 5 MPM lines and was present in the nucleus in 6 cell models. Ten of 17 MPM cell lines showed sensitivity to SN38 treatment, among those 4 expressed TROP2. High AURKA RNA expression and high proliferation rate correlated with sensitivity to SN38-induced cell death, DNA damage response, cell cycle arrest and cell death. Sacituzumab govitecan treatment effectively induced cell cycle arrest and cell death in TROP2-positive MPM cells. CONCLUSION: TROP2 expression and sensitivity to SN38 in MPM cell lines support biomarker-selected clinical exploration of sacituzumab govitecan in patients with MPM.


Asunto(s)
Inmunoconjugados , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Humanos , Línea Celular Tumoral , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mesotelioma/tratamiento farmacológico , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma Maligno/tratamiento farmacológico , Neoplasias Pleurales/tratamiento farmacológico , Neoplasias Pleurales/genética , Neoplasias Pleurales/metabolismo , ARN , Irinotecán/farmacología
13.
Lung Cancer ; 185: 107360, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37713954

RESUMEN

OBJECTIVES: Pleural mesothelioma (PM) is a rare disease with dismal outcome. Systemic treatment options include chemotherapy and immunotherapy, but biomarkers for treatment personalization are missing. The only FDA-approved diagnostic biomarker is the soluble mesothelin-related protein (SMRP). Krebs von den Lungen-6 (KL-6) is a human mucin 1 (MUC1) glycoprotein, which has shown diagnostic and prognostic value as a biomarker in other malignancies. The present study investigated whether KL-6 can serve as a diagnostic and/or prognostic biomarker in PM. MATERIALS AND METHODS: Using a fully-automated chemiluminescence enzyme immunoassay (CLEIA) for KL-6 and SMRP, pleural effusion samples from 87 consecutive patients with PM and 25 patients with non-malignant pleural disorders were studied. In addition, KL-6 and SMRP levels were determined in corresponding patient sera, and in an independent validation cohort (n = 122). MUC1 mRNA and protein expression, and KL-6 levels in cell line supernatants were investigated in PM primary cell lines in vitro. RESULTS: PM patients had significantly higher KL-6 levels in pleural effusion than non-malignant controls (AUC 0.78, p < 0.0001). Among PM patients, levels were highest in those with epithelioid or biphasic histologies. There was a strong positive correlation between pleural effusion levels of KL-6 and SMRP (p < 0.0001). KL-6 levels in sera similarly associated with diagnosis of PM, however, to a lesser extent (AUC 0.71, p = 0.008). PM patients with high pleural effusion KL-6 levels (≥303 IU/mL) had significantly better overall survival (OS) compared to those with low KL-6 levels (HR 0.51, p = 0.004). Congruently, high tumor cell MUC1 mRNA expression in primary cell lines associated with prolonged corresponding patient OS (HR 0.35, p = 0.004). These findings were confirmed in an independent validation cohort. CONCLUSION: This is the first study demonstrating KL-6 as a potential novel liquid-based diagnostic and prognostic biomarker in PM.

14.
Front Cell Dev Biol ; 10: 852812, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392170

RESUMEN

Malignant pleural mesothelioma (MPM) is a rare type of cancer with a grim prognosis. So far, no targetable oncogenic mutation was identified in MPM and biomarkers with predictive value toward drug sensitivity or resistance are also lacking. Nintedanib (BIBF1120) is a small-molecule tyrosine kinase inhibitor that showed promising efficacy preclinically and in phase II trial in MPM as an angiogenesis inhibitor combined with chemotherapy. However, the extended phase III trial failed. In this study, we investigated the effect of nintedanib on one of its targets, the SRC kinase, in two commercial and six novel MPM cell lines. Surprisingly, nintedanib treatment did not inhibit SRC activation in MPM cells and even increased phosphorylation of SRC in several cell lines. Combination treatment with the SRC inhibitor dasatinib could reverse this effect in all cell lines, however, the cellular response was dependent on the drug sensitivity of the cells. In 2 cell lines, with high sensitivity to both nintedanib and dasatinib, the drug combination had no synergistic effect but cell death was initiated. In 2 cell lines insensitive to nintedanib combination treatment reduced cell viability synergisticaly without cell death. In contrast, in these cells both treatments increased the autophagic flux assessed by degradation of the autophagy substrate p62 and increased presence of LC3B-II, increased number of GFP-LC3 puncta and decreased readings of the HiBiT-LC3 reporter. Additionaly, autophagy was synergistically promoted by the combined treatment. At the transcriptional level, analysis of lysosomal biogenesis regulator Transcription Factor EB (TFEB) showed that in all cell lines treated with nintedanib and to a lesser extent, with dasatinib, it became dephosphorylated and accumulated in the nucleus. Interestingly, the expression of certain known TFEB target genes implicated in autophagy or lysosomal biogenesis were significantly modified only in 1 cell line. Finally, we showed that autophagy induction in our MPM cell lines panel by nintedanib and dasatinib is independent of the AKT/mTOR and the ERK pathways. Our study reveals that autophagy can serve as a cytoprotective mechanism following nintedanib or dasatinib treatments in MPM cells.

15.
Biochem Biophys Res Commun ; 410(2): 322-7, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21672522

RESUMEN

The "w" splice forms of PMCA2 localize to distinct membrane compartments such as the apical membrane of the lactating mammary epithelium, the stereocilia of inner ear hair cells or the post-synaptic density of hippocampal neurons. Previous studies indicated that PMCA2w/b was not fully targeted to the apical domain of MDCK cells but distributed more evenly to the lateral and apical membrane compartments. Overexpression of the apical scaffold protein NHERF2, however, greatly increased the amount of the pump in the apical membrane of these epithelial cells. We generated a stable MDCK cell line expressing non-tagged, full-length PMCA2w/b to further study the localization and function of this protein. Here we demonstrate that PMCA2w/b is highly active and shows enhanced apical localization in terminally polarized MDCK cells grown on semi-permeable filters. Reversible surface biotinylation combined with confocal microscopy of fully polarized cells show that the pump is stabilized in the apical membrane via the apical membrane cytoskeleton with the help of endogenous NHERF2 and ezrin. Disruption of the actin cytoskeleton removed the pump from the apical actin patches without provoking its internalization. Our data suggest that full polarization is a prerequisite for proper positioning of the PMCA2w variants in the apical membrane domain of polarized cells.


Asunto(s)
Membrana Celular/enzimología , Polaridad Celular , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Animales , Línea Celular , Perros , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Transfección
16.
Cancers (Basel) ; 13(4)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669371

RESUMEN

Spitzoid melanoma is a rare malignancy with histological characteristics similar to Spitz nevus. It has a diverse genetic background and in adults, a similarly grim clinical outcome as conventional malignant melanoma. We established a spitzoid melanoma cell line (PF130) from the pleural effusion sample of a 37-year-old male patient. We found that the cell line carries a rare MEK1 mutation (pGlu102_Lys104delinsGln) that belongs to the RAF- and phosphorylation-independent subgroup of MEK1 alternations supposedly insensitive to allosteric MEK inhibitors. The in vivo tumorigenicity was tested in three different models by injecting the cells subcutaneously, intravenously or into the thoracic cavity of SCID mice. In the intrapleural model, macroscopic tumors formed in the chest cavity after two months, while subcutaneously and intravenously delivered cells showed limited growth. In vitro, trametinib-but not selumentinib-and the ATP-competitive MEK inhibitor MAP855 strongly decreased the viability of the cells and induced cell death. In vivo, trametinib but not MAP855 significantly reduced tumor growth in the intrapleural model. To the best of our knowledge, this is the first patient-derived melanoma model with RAF- and phosphorylation-independent MEK mutation and we demonstrated its sensitivity to trametinib.

17.
Cancers (Basel) ; 13(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802790

RESUMEN

We demonstrated that the plasma membrane Ca2+ ATPase PMCA4b inhibits migration and metastatic activity of BRAF mutant melanoma cells. Actin dynamics are essential for cells to move, invade and metastasize, therefore, we hypothesized that PMCA4b affected cell migration through remodeling of the actin cytoskeleton. We found that expression of PMCA4b in A375 BRAF mutant melanoma cells induced a profound change in cell shape, cell culture morphology, and displayed a polarized migratory character. Along with these changes the cells became more rounded with increased cell-cell connections, lamellipodia and stress fiber formation. Silencing PMCA4b in MCF-7 breast cancer cells had a similar effect, resulting in a dramatic loss of stress fibers. In addition, the PMCA4b expressing A375 cells maintained front-to-rear Ca2+ concentration gradient with the actin severing protein cofilin localizing to the lamellipodia, and preserved the integrity of the actin cytoskeleton from a destructive Ca2+ overload. We showed that both PMCA4b activity and trafficking were essential for the observed morphology and motility changes. In conclusion, our data suggest that PMCA4b plays a critical role in adopting front-to-rear polarity in a normally spindle-shaped cell type through F-actin rearrangement resulting in a less aggressive melanoma cell phenotype.

18.
Pathol Oncol Res ; 27: 636088, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34257602

RESUMEN

Objective: Uterine carcinosarcoma (UCS) is a rare but highly aggressive malignancy with biphasic growth pattern. This morphology can be attributed to epithelial-mesenchymal transition (EMT) that often associates with tumor invasion and metastasis. Accordingly, we analyzed a novel patient-derived preclinical model to explore whether EMT is a potential target in UCS. Methods: A novel UCS cell line (PF338) was established from the malignant pleural effusion of a 59-year-old patient at time of disease progression. Immunohistochemistry was performed in primary and metastatic tumor lesions. Oncogenic mutations were identified by next-generation sequencing. Viability assays and cell cycle analyses were used to test in vitro sensitivity to different standard and novel treatments. E-cadherin, ß-catenin and pSMAD2 expressions were measured by immunoblot. Results: Whereas immunohistochemistry of the metastatic tumor showed a predominantly sarcomatous vimentin positive tumor that has lost E-cadherin expression, PF338 cells demonstrated biphasic growth and carried mutations in KRAS, PIK3CA, PTEN and ARID1A. PF338 tumor cells were resistant to MEK- and TGF-ß signaling-inhibition but sensitive to PIK3CA- and PARP-inhibition and first-line chemotherapeutics. Strikingly, histone deacetylase (HDAC) inhibition markedly reduced cell viability by inducing a dose-dependent G0/1 arrest and led to mesenchymal-epithelial transition as evidenced by morphological change and increased E-cadherin and ß-catenin expression. Conclusions: Our data suggest that HDAC inhibition is effective in a novel UCS cell line by interfering with both viability and differentiation. These findings emphasize the dynamic manner of EMT/MET and epigenetics and the importance of molecular profiling to pave the way for novel therapies in UCS.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinosarcoma/patología , Puntos de Control del Ciclo Celular , Transición Epitelial-Mesenquimal , Histona Desacetilasas/química , Derrame Pleural Maligno/patología , Neoplasias Uterinas/patología , Biomarcadores de Tumor/genética , Carcinosarcoma/tratamiento farmacológico , Carcinosarcoma/metabolismo , Cisplatino/administración & dosificación , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Mutación , Paclitaxel/administración & dosificación , Ftalazinas/administración & dosificación , Piperazinas/administración & dosificación , Derrame Pleural Maligno/tratamiento farmacológico , Derrame Pleural Maligno/metabolismo , Pronóstico , Pirazoles/administración & dosificación , Quinolinas/administración & dosificación , Células Tumorales Cultivadas , Neoplasias Uterinas/tratamiento farmacológico , Neoplasias Uterinas/metabolismo , Vorinostat/administración & dosificación
19.
Lung Cancer ; 144: 20-29, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32353632

RESUMEN

OBJECTIVES: Somatic chromosomal rearrangements resulting in ALK fusion oncogenes are observed in 3-7 % of lung adenocarcinomas. ALK tyrosine kinase inhibitors (ALKi) induce initially response, however, various resistance mechanisms limit their efficacy. Novel therapeutic approaches are of utmost importance to tailor these targeted therapies. MATERIALS AND METHODS: A synchronous ALK-rearranged and mutated lung cancer cell line pair was established from malignant pleural effusion (PF240-PE) and carcinosis (PF240-PC) at time of ALKi resistance. Immunohistochemistry, FISH and sequencing were performed in pre- and post-treatment tumors and in both cell lines. Differentiation markers were measured by immunoblot. Viability was tested following treatment with ALKi and/or a pan-HDAC inhibitor. Additionally, a novel treatment-naïve ALK-rearranged cell line served as control. In vivo tumorigenicity was evaluated in subcutaneous xenografts. RESULTS: Two distinct resistance mutations were identified in different carcinosis tissues at time of resistance, the previously described resistance mutation L1152R and the hitherto uncharacterized E1161K. Strikingly, PF240-PC cells carried E1161K and PF240-PE cells harbored L1152R. Immunohistochemistry and immunoblot identified epithelial-to-mesenchymal transition markers upregulated following ALKi resistance development both in carcinosis tissues and cell lines. While both lines grew as xenografts, they differed in morphology, migration, in vivo growth and sensitivity to ALKi in vitro. Strikingly, the combination of ALKi with SAHA yielded strong synergism. CONCLUSION: Using a patient-derived ALKi resistant lung cancer model we demonstrated the synergism of HDAC and ALK inhibition. Furthermore, our findings provide strong evidence for intratumoral heterogeneity under targeted therapy and highlight the importance of site-specific mutational analysis.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Resistencia a Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
20.
Pathol Oncol Res ; 26(4): 2523-2535, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32591993

RESUMEN

While papillary thyroid cancer (PTC) has largely favorable prognosis, anaplastic thyroid cancer (ATC) is a rare but extremely aggressive malignancy with grim clinical outcome. Even though new therapeutic options are emerging for ATC, additional preclinical models and novel combinations are needed for specific subsets of patients. We established a novel cell line (PF49) from the malignant pleural effusion of a 68-year-old male patient with ATC that rapidly transformed from a BRAF and TERT promoter mutant PTC. PF49 cells demonstrated a robust migratory activity in vitro and strong invasive capacity in vivo in a pleural carcinosis model. Combined BRAF and MEK inhibition decreased the proliferation and migration of PF49 cells, however could not induce cell death. Importantly, HDAC inhibitor treatment with SAHA or valproic acid induced cell cycle arrest and strongly increased PD-L1 expression of the tumor cells. Induction of PD-L1 expression was also present when paclitaxel-cisplatin chemotherapeutic treatment was combined with HDAC inhibitor treatment. Increased PD-L1 expression after HDAC inhibition was recapitulated in an international ATC cell model. Our data suggest that HDAC inhibition alone or in combination with standard chemotherapy may potentiate anaplastic thyroid cancer cells for immunotherapy.


Asunto(s)
Antígeno B7-H1/biosíntesis , Línea Celular Tumoral/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Carcinoma Anaplásico de Tiroides/patología , Neoplasias de la Tiroides/patología , Anciano , Animales , Antígeno B7-H1/efectos de los fármacos , Línea Celular Tumoral/metabolismo , Transformación Celular Neoplásica/patología , Humanos , Masculino , Ratones , Ratones SCID , Cáncer Papilar Tiroideo/patología , Carcinoma Anaplásico de Tiroides/metabolismo , Neoplasias de la Tiroides/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA