RESUMEN
Recent advances in extracellular vesicle (EVs) detection and isolation methods have led to the development of novel therapeutic modalities. Among different types of EVs, exosomes (Exos) can transfer different signaling biomolecules and exhibit several superior features compared to whole-cell-based therapies. Therapeutic factors are normally loaded into the Exo lumen or attached to their surface for improving the on-target delivery rate and regenerative outcomes. Despite these advantages, there are several limitations in the application of Exos in in vivo conditions. It was suggested that a set of proteins and other biological compounds are adsorbed around Exos in aqueous phases and constitute an external layer named protein corona (PC). Studies have shown that PC can affect the physicochemical properties of synthetic and natural nanoparticles (NPs) after introduction in biofluids. Likewise, PC is generated around EVs, especially Exos in in vivo conditions. This review article is a preliminary attempt to address the interfering effects of PC on Exo bioactivity and therapeutic effects. Video Abstract.
Asunto(s)
Exosomas , Vesículas Extracelulares , Corona de Proteínas , Exosomas/metabolismo , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Proteínas/metabolismoRESUMEN
Human endothelial progenitor cells (EPCs) were isolated from cord blood samples and enriched by magnetic activated cell sorting method based on the CD133 marker. Cells were incubated with different doses of bacterial lipopolysaccharide, ranging from 2, 5, 10, 50, 100, 200, 250, 500, to 1000 µg/ml, for 48 h. The cell survival rate was determined by using MTT assay. To confirm activation of the toll-like receptor signaling pathway, PCR array analysis was performed. Protein levels of ERK1/2, p-ERK1/2, NF-ÆB and TRIF proteins were measured using western blotting. The content of TNF-α and lipoprotein lipase activity were analyzed by immunofluorescence imaging. Flow cytometric analysis of CD31 was performed to assess the maturation rate. Cell migration was studied by the Transwell migration assay. The expression of genes related to exosome biogenesis was measured using real-time PCR analysis. In vivo gel plug angiogenesis assay was done in nude mice. Lipopolysaccharide changed endothelial progenitor cells' survival in a dose-dependent manner with maximum viable cells in groups treated with 2 µg/ml. PCR array analysis showed the activation of toll-like signaling pathways after exposure to LPS (p<0.05). Western blotting analysis indicated an induction of p-ERK1/2 and Erk1/2, NF-kB and TRIF in LPS-treated EPCs compared with the control (p<0.05). Immunofluorescence staining showed an elevation of TNF-α and lipoprotein lipase activity after lipopolysaccharide treatment (p<0.05). Lipopolysaccharide increased EPC migration and expression of exosome biogenesis-related genes (p<0.05). In vivo gel plug analysis revealed enhanced angiogenesis in cells exposed to bacterial lipopolysaccharide. Data highlighted the close relationship between the toll-like receptor signaling pathway and functional activity in EPCs.
Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Receptores Toll-Like/metabolismo , Animales , Humanos , Ratones , Transducción de SeñalRESUMEN
In this study, the angiogenic capacity of human endothelial cells was studied after being plated on the surface of polyurethane-poly caprolactone (PU/PCL) scaffolds for 72 h. In this study, cells were designated into five different groups, including PU, PU/PCL (2:1), PU/PCL (1:1); PU/PCL (1:2); and PCL. Data revealed that the PU/PCL (2:1) composition had a higher modulus and breakpoint in comparison with the other groups (p < 0.05). Compared to the other groups, the PU/PCL scaffold with a molar ratio of 2:1 had lower the contact angle θ and higher tensile stress (p < 0.05). The mean size of the PU nanofibers was reduced after the addition of PCL (p < 0.05). Based on our data, the culture of endothelial cells on the surface of PU/PCL (2:1) did not cause nitrosative stress and cytotoxic effects under static conditions compared to cells plated on a conventional plastic surface (p > 0.05). Based on data from the static condition, we fabricated a tubular PU/PCL (2:1) construct for six-day dynamic cell culture inside loop air-lift bioreactors. Scanning electron microscopy showed the attachment of endothelial cells to the luminal surface of the PU/PCL scaffold. Cells were flattened and aligned under the culture medium flow. Immunofluorescence imaging showed the attachment of cells to the luminal surface indicated by blue nuclei on the luminal surface. These data demonstrated that the application of PU/PCL substrate could stimulate endothelial cells activity under static and dynamic conditions.
Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/fisiología , Nanofibras , Poliésteres/química , Poliuretanos/química , Andamios del Tejido , Reactores Biológicos , Adhesión Celular , Técnicas de Cultivo de Célula , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Módulo de Elasticidad , Células Endoteliales de la Vena Umbilical Humana/ultraestructura , Humanos , Resistencia a la Tracción , Factores de TiempoRESUMEN
The emergence of an inflammatory condition such as asthma could affect the therapeutic potential of stem cells. Synopsis of previous documents yielded controversial outcomes, leading to a limitation of stem cell-based therapy in the clinical setting. This study aimed to assess the impact of asthmatic serum on the MSCs aging and dynamic growth in vitro. Rats were divided into control and asthmatic groups randomly. The asthmatic change was induced using OVA sensitization. The asthmatic structural changes are monitored by conventional Haematoxylin-Eosin staining. Thereafter, blood samples were taken and sera provided from each group. In this study, primary bone marrow mesenchymal stem cells were cultured in culture medium supplemented with normal and asthmatic serum for 7 days. The MSCs viability was examined using the MTT assay. The expression of the aging-related gene (ß-galactosidase), and stemness-related markers such as Sox2, Kfl-4 and p16INK4a were analysed by real-time PCR assay. Histological examination revealed chronic inflammatory remodelling which is identical to asthmatic changes. MTT assay showed a reduction of mesenchymal stem cell viability compared to the control group (P < .05). Real-time PCR analysis revealed a down-regulation of stemness-related markers Sox2, Kfl-4 and p16INK4a coincided with aging changes (ß-galactosidase) compared to the control group (P < .05). These data show the detrimental effect of asthmatic condition on bone marrow regenerative potential by accelerating early-stage aging in different stem cells and further progenitor cell depletion. SIGNIFICANCE OF THE STUDY: In such inflammatory conditions as asthma, the therapeutic potential of stem cells may be altered. We demonstrate that serum from asthmatic rats had the potential to reduce the viability of mesenchymal stem cells in vitro. Furthermore, we observed that the expression of the aging-related gene known ß-galactosidase was statistically increased in cells co-cultured with asthmatic serum. At the same time, expression of stemness-related markers Sox2, Kfl-4 and p16INK4a down-regulated. These results support the damaging effect of asthmatic condition on bone marrow regenerative ability by inducing early-stage aging in stem cells and additional progenitor cell reduction.
Asunto(s)
Asma/metabolismo , Células Madre Mesenquimatosas/metabolismo , Factores de Edad , Animales , Asma/patología , Enfermedad Crónica , Citometría de Flujo , Masculino , Células Madre Mesenquimatosas/patología , Ratas , Ratas WistarRESUMEN
Cardiovascular disease is the main cause of death globally that can be mitigated by the modulation of angiogenesis. To achieve this goal, the application of endothelial progenitor cells and other stem cell types is useful. Following the onset of cardiovascular disease and pro-inflammatory conditions as seen during bacterial sepsis, endothelial progenitor cells enter systemic circulation in response to multiple cytokines and activation of various intracellular mechanisms. The critical role of Toll-like receptors has been previously identified in the dynamics of various cell types, in particular, immune cells. To our knowledge, there are a few experiments related to the role of Toll-like receptors in endothelial progenitor cell activity. Emerging data point of endothelial progenitor cells and other stem cells having the potential to express Toll-like receptors to control different activities such as multipotentiality and dynamics of growth. In this review article, we aim to collect data related to the role of Toll-like receptors in endothelial progenitor cells bioactivity and angiogenic potential.
Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Receptores Toll-Like/metabolismo , Animales , Humanos , Modelos Biológicos , Neovascularización Fisiológica , Transducción de SeñalRESUMEN
NEW FINDINGS: What is the central question of this study? The aim of the experiment was to highlight the regenerative capacity of bone marrow Kit+ cells in the restoration of asthmatic pulmonary function in the rat model. What is the main finding and its importance? Data showed that these cells were recruited successfully to the asthmatic niche after intratracheal administration and accelerated the regeneration of asthmatic lungs by the modulation of inflammation via the control of Gata3 and Tbx21 expression, leading to decreased tracheal responsiveness to methacholine and reduction of pathological remodelling. ABSTRACT: Allergic asthma is a T helper (Th) 2 immunological disorder with consequential uncontrolled inflammatory responses. There is an increasing demand to use new methods for the treatment of asthma based on modulation of the Th2-to-Th1 ratio in favour of the Th1 population. Accordingly, we decided to evaluate the effects of intratracheal administration of Kit+ bone marrow cells on tracheal responsiveness and the expression of Gata3 and Tbx21 genes. Forty male Wistar rats were allocated randomly into four experimental groups: healthy rats (control group), sensitized rats (OVA group), sensitized rats receiving Kit- cells (OVA+Kit- group) and sensitized rats receiving Kit+ cells (OVA+Kit+ group). Total and differential white blood cell counts, tracheal responsiveness to cumulative methacholine concentrations and histopathological analysis were evaluated. The results showed a statistically significant increase in total white blood cell, eosinophil and neutrophil counts, tracheal contractility, Gata3 expression and prototypical histopathology of asthma. Along with these conditions, we found that the number of lymphocytes was decreased and expression of Tbx21 diminished in sensitized rats compared with control animals. Monitoring of labelled tagged cells confirmed successful engraftment of transplanted cells in pulmonary tissue. Juxtaposition of Kit+ cells changed the blood leucogram closer to the control values. Kit+ cells increased the expression of Tbx21 and suppressed Gata3 (P < 0.05). In the OVA+Kit+ group, tracheal responsiveness was improved coincident with increased pulmonary regeneration. In conclusion, this study showed that intratracheal administration of bone marrow-derived Kit+ cells, but not Kit- cells, could be effective in the alleviation of asthma, presumably by the modulation of Gata3 and Tbx21.
Asunto(s)
Asma/terapia , Factor de Transcripción GATA3/metabolismo , Pulmón/fisiopatología , Trasplante de Células Madre , Proteínas de Dominio T Box/metabolismo , Animales , Células de la Médula Ósea , Recuento de Leucocitos , Masculino , Proteínas Proto-Oncogénicas c-kit , Ratas , Ratas Wistar , TráqueaRESUMEN
This review article aims to address the kinetic of TDEs in cancer cells pre- and post-radiotherapy. Radiotherapy is traditionally used for the treatment of multiple cancer types; however, there is growing evidence to show that radiotherapy exerts NTEs on cells near to the irradiated cells. In tumor mass, irradiated cells can affect non-irradiated cells in different ways. Of note, exosomes are nano-scaled cell particles releasing from tumor cells and play key roles in survival, metastasis, and immunosuppression of tumor cells. Recent evidence indicated that irradiation has the potential to affect the dynamic of different signaling pathways such as exosome biogenesis. Indeed, exosomes act as intercellular mediators in various cell communication through transmitting bio-molecules. Due to their critical roles in cancer biology, exosomes are at the center of attention. TDEs contain an exclusive molecular signature that they may serve as tumor biomarker in the diagnosis of different cancers. Interestingly, radiotherapy and IR could also contribute to altering the dynamic of exosome secretion. Most probably, the content of exosomes in irradiated cells is different compared to exosomes originated from the non-irradiated BCs. Irradiated cells release exosomes with exclusive content that mediate NTEs in BCs. Considering variation in cell type, IR doses, and radio-resistance or radio-sensitivity of different cancers, there is, however, contradictions in the feature and activity of irradiated exosomes on neighboring cells.
Asunto(s)
Efecto Espectador/efectos de la radiación , Exosomas/efectos de la radiación , Neoplasias/patología , Neoplasias/radioterapia , Comunicación Celular/efectos de la radiación , Exosomas/patología , Humanos , Transducción de Señal/efectos de la radiaciónRESUMEN
Heat shock proteins (HSPs) participate in the regulation of different cell activities in response to stimuli. By applying different strategies, the modulation of heat shock proteins is at the center of attention. Conventional delivery approaches are not fully encouraged due to cytotoxicity and immunogenicity issues. Exosomes are touted as bio-shuttles for delivery of distinct biomolecules inside the cells. Here, we aimed to HSP27 small interfering RNA (siRNA)-tagged exosomes for the inhibition of Hsp27 in human neuroblastoma cell line SH-SY5Y and explored differentiation into neuron-like cells. Exosomes were isolated, characterized by scanning electron microscope (SEM) and CD63 then enriched with siRNA against Hsp27. Neuroblastoma cells were incubated with exosomes carrying siRNA for 48 hr. Exosome uptake was monitored by immunofluorescence assay. The cell viability and proliferation were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine/5-bromo-2'-deoxyuridine incorporation assays. The ability of cells to form colonies was evaluated by clonogenic assay. The cell potential to express NeuN, a mature neuron factor, was studied by flow cytometry analysis. SEM showed the nano-sized particles and a high level of CD63 after enrichment. Immunofluorescence imaging revealed an appropriate transfection rate in cell exposed to Hsp27 siRNA tagged exosomes. The cell viability and proliferation were reduced compared to cells received nude exosomes ( p < 0.05). Clonogenic activity of cells was diminished by the inhibition of Hsp27. Flow cytometry analysis revealed that the inhibition of Hsp27 prohibited NeuN content, showing the maturation of SH-SY5Y cells to mature cells compared to control. These data confirmed that exosomes could be used as appropriate bio-shuttles for the inhibition of Hsp27-aborted cell differentiation toward mature neuron.
Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Choque Térmico/antagonistas & inhibidores , Chaperonas Moleculares/antagonistas & inhibidores , Células-Madre Neurales/citología , Neurogénesis/fisiología , Neuronas/citología , Línea Celular Tumoral , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Exosomas , Vectores Genéticos , Proteínas de Choque Térmico/administración & dosificación , Humanos , Chaperonas Moleculares/administración & dosificación , Neuroblastoma , Neuronas/metabolismo , ARN Interferente Pequeño/administración & dosificación , TransfecciónRESUMEN
Cardiovascular diseases are the main cause of death globally. Many attempts have been done to ameliorate the pathological changes after the occurrence of myocardial infarction. Curcumin is touted as a polyphenol phytocompound with appropriate cardioprotective properties. In this study, the therapeutic effect of curcumin was investigated on acute myocardial infarction in the model of rats. Rats were classified into four groups; control, isoproterenol hydrochloride (ISO) (100 mg/kbw), curcumin (50 mg/kbw), and curcumin plus ISO treatment groups. After 9-day administration of curcumin, levels of lactate dehydrogenase (LDH), creatine kinase (CK), and cardiac troponin I (cTnI) were determined. Superoxide dismutase (SOD) and malondialdehyde (MDA) contents were measured to investigate the oxidative status in infarct rats received curcumin. By using H & E staining, tissue inflammation was performed. Masson's trichrome staining was conducted to show cardiac remodeling and collagen deposition. The number of apoptotic cells was determined by using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Data showed the serum decrease of LDH, CK, and cTnI in infarct rats after curcumin intake compared to the rats given (ISO) ( P < 0.05). Curcumin was found to reduce oxidative status by reducing SOD and MDA contents ( P < 0.05). Gross and microscopic examinations revealed that the decrease of infarct area, inflammation response and collagen deposition in rats given ISO plus curcumin ( P < 0.05). We noted the superior effect of curcumin to reduce the number of apoptotic cardiomyocytes after 9 days. Data point the cardioprotective effect of curcumin to diminish the complication of infarction by the reduction of cell necrosis and apoptosis in a rat model of experimental infarction.
RESUMEN
BACKGROUND: Toxoplasma gondii is an obligate intracellular protozoan parasite that can invade all mammalian cells. It is well established that natural killer (NK) cells have critical protective roles in innate immunity during infections by intracellular pathogens. In the current study, we conducted an in vitro experiment to evaluate NK cell differentiation and activation from human umbilical cord blood mononuclear cells (UCB-MNCs) after infection with T. gondii tachyzoites. METHODS: UCB-MNCs were infected by fresh tachyzoites of type I (RH) or type II (PTG) strains of T. gondii pre-expanded in mesenchymal stem cells for 2 weeks in a medium enriched with stem cell factor, Flt3, IL-2, and IL-15. Flow cytometry analysis and western blot analysis were performed to measure the CD57+, CD56+, and Granzyme A (GZMA). RESULTS: Data revealed that incubation of UCB-MNCs with NK cell differentiation medium increased the CD57+, CD56+, and GZMA. UCB-MNCs cocultured with PTG tachyzoites showed a significant reduction of CD56+ and GZMA, but nonsignificant changes, in the levels of CD56+ compared to the control UCB-MNCs (p > .05). Noteworthy, 2-week culture of UCB-MNCs with type I (RH) tachyzoites significantly suppressed CD57+, CD56+, and GZMA, showing reduction of NK cell differentiation from cord blood cells. CONCLUSION: Our findings suggest that virulent T. gondii tachyzoites with cytopathic effects inhibit NK cell activation and eliminate innate immune responses during infection, and consequently enable the parasite to continue its survival in the host body.
Asunto(s)
Diferenciación Celular , Sangre Fetal , Células Asesinas Naturales , Toxoplasma , Humanos , Células Asesinas Naturales/inmunología , Sangre Fetal/citología , Sangre Fetal/inmunología , Sangre Fetal/parasitología , Diferenciación Celular/inmunología , Toxoplasma/inmunología , Células Cultivadas , Toxoplasmosis/inmunología , Toxoplasmosis/parasitología , Inmunidad Innata , Activación de Linfocitos/inmunología , Leucocitos Mononucleares/inmunologíaRESUMEN
During the past decades, the advent of different microneedle patch (MNPs) systems paves the way for the targeted and efficient delivery of several growth factors into the injured sites. MNPs consist of several micro-sized (25-1500 µm) needle rows for painless delivery of incorporated therapeutics and increase of regenerative outcomes. Recent data have indicated the multifunctional potential of varied MNP types for clinical applications. Advances in the application of materials and fabrication processes enable researchers and clinicians to apply several MNP types for different purposes such as inflammatory conditions, ischemic disease, metabolic disorders, vaccination, etc. Exosomes (Exos) are one of the most interesting biological bioshuttles that participate in cell-to-cell paracrine interaction with the transfer of signaling biomolecules. These nano-sized particles, ranging from 50 to 150 nm, can exploit several mechanisms to enter the target cells and deliver their cargo into the cytosol. In recent years, both intact and engineered Exos have been increasingly used to accelerate the healing process and restore the function of injured organs. Considering the numerous benefits provided by MNPs, it is logical to hypothesize that the development of MNPs loaded with Exos provides an efficient therapeutic platform for the alleviation of several pathologies. In this review article, the authors collected recent advances in the application of MNP-loaded Exos for therapeutic purposes.
Asunto(s)
Exosomas , Exosomas/metabolismo , Cicatrización de Heridas , Sistemas de Liberación de Medicamentos , Agujas , VacunaciónRESUMEN
Exo are natural nano-sized vesicles with an endosomal origin that maintain cell-to-cell communications in a paracrine manner. Owing to their physicochemical properties, Exo transfer various types of bioactive metabolites from origin cells to the recipient cells, resulting in induction/inhibition of specific signaling pathways. Like different tissues, Exo are indispensable for the function of neural cells inside the brain parenchyma. Various aspects such as neurogenesis, microglial polarization, and angiogenesis are closely associated with the reciprocal interchanges of Exo between cells in a tightly regulated manner. Similar to physiological conditions, these particles can affect the progression of inflammatory responses following the onset of pathologies. The existence of several uptake exosomal mechanisms, such as receptor-mediated endocytosis, and high penetration capacity into the deep layers of the brain makes Exo promising bio-shuttles for the alleviation of pathological conditions. Like astrocytes, stem cells can release Exo into the surrounding niche with neuroprotective properties regenerative potential. Whether and how Exo can initiate the essential signals required for neurogenesis has not been fully understood. In this review, we will try to elaborate on the putative therapeutic role of Exo in the dynamic activity of neuronal cells.
Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Astrocitos/metabolismo , Encéfalo , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Neuronas/metabolismoRESUMEN
OBJECTIVES: In this study, cardiovascular disorders were examined with a focus on the aging pathway and autophagy involvement in cardiac samples isolated from male rats with type 2 diabetes mellitus. MATERIALS AND METHODS: In the present study, male Wistar rats became diabetic with the help of a high-fat diet. Gene and protein expression levels (to evaluate Tumor Necrosis Factor-α, TNF-α) were measured by the ELISA method. Nrf2, p38, and GSK-3ß proteins in cardiac tissue samples were measured by the western blotting method. Autophagy examination was performed with immunofluorescence staining. Finally, quantitative results were calculated using statistical analysis. RESULTS: The expression of beta-galactosidase genes had a significant increase in the diabetic group (P=0.0001). However, there was no significant difference in the expression of the SERCA2a gene between the diabetic and control groups. In terms of protein expression, the amount of TNF-α protein in the diabetic group was significantly different from that of the control group (P=0.0102). The expression levels of p38, Nrf2, and GSK-3ß proteins increased compared with the control group. The use of the LC3 immunofluorescence staining technique revealed that autophagy increased in the diabetic group. CONCLUSION: Type 2 diabetes mellitus in rats will increase aging in cardiac cells. Examination of the signaling pathway indicates that this effect is related to the increase of ROS and the activity of the signaling pathway. In response, the cardiac cells try to maintain their homeostasis by increasing autophagy and decreasing inflammatory cytokines.
RESUMEN
OBJECTIVE: The current experiment aimed to assess the impact of detergents such as 3% Triton X-100, 1% peracetic acid, 1% Tween-20, and 1% SDS in combination with Trypsin-EDTA on acellularization of ovine aortae after 7 days. RESULTS: Hematoxylin-Eosin staining showed an appropriate acellularization rate in ovine aortae, indicated by a lack of cell nuclei in the tunica media layer. DAPI staining confirmed the lack of nuclei in the vascular wall after being exposed to the combination of chemical and enzymatic solutions. Verhoeff-Van Gieson staining showed that elastin fibers were diminished in acellular samples compared to the control group while collagen stands were unchanged. CCK-8 survival assay showed enhanced viability in human umbilical vein endothelial cells 5 days after being cultured on decellularized samples compared to the cells cultured on a plastic surface (p < 0.05). SEM imaging showed flattening of endothelial cells on the acellular surface.
Asunto(s)
Colágeno , Células Endoteliales , Animales , Aorta , Humanos , Ovinos , Ingeniería de TejidosRESUMEN
Purpose: Here, we investigated the angiogenic potential of endothelial progenitor cells juxtaposed with mesenchymal stem cells (MSCs) inside alginate-gelatin microspheres with stromal derived factor-1α (SDF-1 α) for 7 days. Methods: Six encapsulated groups were allocated including endothelial progenitor cells (EPCs), EPCs/SDF-1α, MSCs, MSCs/SDF-1α, EPCs+MSCs and EPCs+MSCs/SDF-1α. Cells were encapsulated with a mixture of 1% alginate and 2% gelatin hydrogel. Cell survival was examined by MTT assay. Endothelial differentiation was determined by flow cytometry and ELISA. Tubulogenesis assay and Ac-Dil-LDL uptake were used to detect functional activity. Cell migration was analyzed by Transwell insert and gelatin zymography analyses. By using real-time polymerase chain reaction (PCR), we measured the transcription of Akt and PK1. Results: We found an increase in cell viability in MSCs/SDF-1α microspheres compared to EPCs group (P <0.05). EPC/MSCs co-culture contributed to the increase of CD133+ cells while we found high CD31 levels in MSCs group (P <0.05). Juxtaposition of EPC with MSCs increased tubulogenesis compared to SDF-1a-free condition (P <0.001). SDF-1α had the potential to increase in AC-LDL uptake in MSCs and EPCs/MSCs groups. Cells migration and MMP-9 activities increased after treatment with SDF-1α. SDF-1α upregulated PK1 and Akt in encapsulated cells, especially in a co-culture system. Conclusion: Alginate-gelatin microspheres could alter the angiogenic potential of progenitor cells in the presence of SDF-1α.
RESUMEN
The COVID-19 pandemic has profoundly influenced public health and contributed to global economic divergences of unprecedented dimensions. Due to the high prevalence and mortality rates, it is then expected that the consequence and public health challenges will last for long periods. The rapid global spread of COVID-19 and lack of enough data regarding the virus pathogenicity multiplies the complexity and forced governments to react quickly against this pandemic. Stem cells represent a small fraction of cells located in different tissues. These cells play a critical role in the regeneration and restoration of injured sites. Because of their specific niche and a limited number of stem cells, the key question is whether there are different anti-viral mechanisms against viral infection notably COVID-19. Here, we aimed to highlight the intrinsic antiviral resistance in different stem cells against viral infection. These data could help us to understand the possible viral infections in different stem cells and the activation of specific molecular mechanisms upon viral entrance.
Asunto(s)
COVID-19/terapia , Pandemias , Trasplante de Células Madre , Virosis/terapia , COVID-19/virología , Brotes de Enfermedades/prevención & control , Humanos , SARS-CoV-2/patogenicidad , Células Madre/patología , Virosis/virologíaRESUMEN
Biocompatible, biodegradable, and injectable hydrogels are a novel and promising approach for bone regeneration. In this study, poly(caprolactone)-poly(ethylene glycol)-poly(caprolactone) (PCL-PEG-PCL), PCL-PEG-PCL-gelatin (Gel), PCL-PEG-PCL-Gel/nano-hydroxyapatite (nHA) injectable hydrogels were synthesized and evaluated in a mouse model of subcutaneous transplantation after 14 days. PCL-PEG-PCL-Gel and PCL-PEG-PCL-Gel/nHA hydrogels were fabricated with in situ precipitation method. Structure, intermolecular interaction, and the reaction between the PCL-PEG-PCL, Gel, and nHA were evaluated using a scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (H-NMR), and carbon nuclear magnetic resonance (C-NMR). Fourteen days after subcutaneous injection, the existence of an immune system reaction was investigated using Hematoxylin and Eosin (H&E) staining. Using immunofluorescence imaging, the number of CD68+ cells was determined in the periphery of the hydrogel. The CD8/CD4 lymphocyte ratio was also calculated in blood samples. We monitored the expression of CCL-2, BCL-2, IL-10, and CD31 using real-time PCR assay. The chemical evaluation revealed the successful integration of Gel and nHA to the PCL-PEG-PCL backbone. Histological examination showed the lack of inflammation at the site of injection. No toxicological effects were determined in hepatic and renal tissues. The addition of nHA to the PCL-PEG-PCL-Gel decreased biodegradation time. None of the hydrogels caused statistically significant differences in the number of CD68 cells (p > 0.05). The CD8/CD4 lymphocyte ratio remained unchanged in all groups (p > 0.05). Compared to the PCL-PEG-PCL group, the addition of nHA and Gel increased the expression of CCL-2, BCL-2, IL-10, and CD31 (p < 0.05). In conclusion, the current study showed that PCL-PEG-PCL-Gel/nHA hydrogels could be used in in vivo conditions without prominent toxic effects and inflammatory responses.
Asunto(s)
Materiales Biocompatibles/química , Durapatita/química , Hidrogeles/química , Nanoestructuras/química , Poliésteres/química , Polietilenglicoles/química , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/farmacología , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Durapatita/metabolismo , Durapatita/farmacología , Gelatina/química , Hidrogeles/metabolismo , Hidrogeles/farmacología , Inyecciones Subcutáneas , Riñón/patología , Hígado/patología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ReologíaRESUMEN
During the last two decades, melatonin has been found to have pleiotropic effects via different mechanisms on its target cells. Data are abundant for some aspects of the signaling pathways within cells while other casual mechanisms have not been adequately addressed. From an evolutionary perspective, eukaryotic cells are equipped with a set of interrelated endomembrane systems consisting of intracellular organelles and secretory vesicles. Of these, exosomes are touted as cargo-laden secretory vesicles that originate from the endosomal multivesicular machinery which participate in a mutual cross-talk at different cellular interfaces. It has been documented that cells transfer various biomolecules and genetic elements through exosomes to sites remote from the original cell in a paracrine manner. Findings related to the molecular mechanisms between melatonin and exosomal biogenesis and cargo sorting are the subject of the current review. The clarification of the interplay between melatonin and exosome biogenesis and cargo sorting at the molecular level will help to define a cell's secretion capacity. This review precisely addresses the role and potential significance of melatonin in determining the efflux capacity of cells via the exosomal pathway. Certain cells, for example, stem cells actively increase exosome efflux in response to melatonin treatment which accelerates tissue regeneration after transplantation into the injured sites.
RESUMEN
Nowadays, a large population around the world, especially the elderly, suffers from neurological inflammatory and degenerative disorders/diseases. Current drug delivery strategies are facing different challenges because of the presence of the BBB, which limits the transport of various substances and cells to brain parenchyma. Additionally, the low rate of successful cell transplantation to the brain injury sites leads to efforts to find alternative therapies. Stem cell byproducts such as exosomes are touted as natural nano-drug carriers with 50-100 nm in diameter. These nano-sized particles could harbor and transfer a plethora of therapeutic agents and biological cargos to the brain. These nanoparticles would offer a solution to maintain paracrine cell-to-cell communications under healthy and inflammatory conditions. The main question is that the existence of the intact BBB could limit exosomal trafficking. Does BBB possess some molecular mechanisms that facilitate the exosomal delivery compared to the circulating cell? Although preliminary studies have shown that exosomes could cross the BBB, the exact molecular mechanism(s) beyond this phenomenon remains unclear. In this review, we tried to compile some facts about exosome delivery through the BBB and propose some mechanisms that regulate exosomal cross in pathological and physiological conditions.
RESUMEN
BACKGROUND: Atherosclerosis is touted as one of the most critical consequences of diabetes mellitus indicated by local inflammation of endothelial cells. The Effect of Omega 3 fatty acids, mainly docosahexaenoic acid (DHA), has been investigated in cells after exposure to high doses of lipids. The current experiment aimed to address the modulatory effects of docosahexaenoic acid and insulin in palmitic-treated human endothelial cells. METHODS: Human umbilical vein endothelial cells were treated with 1 mM palmitic acid, 50 µM insulin, 50 µM docosahexaenoic acid, and their combination for 48 h. Cell survival rate and apoptosis were measured using MTT and flow cytometry assays. The Griess assay detected NO levels. Protein levels of TNF-α, IL-6, and NF-κB were studied using ELISA and immunofluorescence imaging. The expression of genes participating in atherosclerosis was monitored using PCR array analysis. RESULTS: Oil Red O staining showed the inhibitory effect of DHA and insulin to reduce the intracellular accumulation of palmitic acid. Both DHA and Insulin blunted palmitic acid detrimental effects on HUVECs indicated by an increased survival rate (p < 0.05). The percent of apoptotic cells was decreased in palmitic-treated cells received insulin and DHA compared to palmitic-treated group (p < 0.05). Based on our data, DHA and Insulin diminished the production of all inflammatory cytokines, TNF-α, IL-6, and NF-κB, in palmitic-treated cells (p < 0.05). Similar to these data, NO production was also decreased in all groups treated with insulin and DHA compared to the palmitic-treated cells (p < 0.05). PCR array analysis revealed the modulatory effect of DHA and insulin on the expression of atherosclerosis-related genes pre-treated with palmitic acid compared to the control group (p < 0.05). CONCLUSION: DHA and Insulin could alter the dynamic growth and dysfunctional activity of human endothelial cells after treatment with palmitic acid. Taken together, Omega 3 fatty acids, along with insulin, could dictate specific cell behavior in endothelial cells in vitro.