Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Environ Monit ; 11(12): 2207-15, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20024018

RESUMEN

This study examined the occurrence in wastewater of 11 aromatic biocides, pesticides and degradates, and their fate during passage through US treatment plants, as well as the chemical mass contained in sewage sludge (biosolids) destined for land application. Analyte concentrations in wastewater influent, effluent and sludge from 25 facilities in 18 US states were determined by liquid chromatography electrospray (tandem) mass spectrometry. Dichlorocarbanilide, fipronil, triclocarban, and triclosan were found consistently in all sample types. Dichlorophene, hexachlorophene, and tetrachlorocarbanilide were detected infrequently only, and concentrations of the phenyl urea pesticides diflubenzuron, hexaflumuron, and linuron were below the limit of detection in all matrixes. Median concentrations (+/-95% confidence interval) of quantifiable compounds in influent ranged from 4.2 +/- 0.8 microg L(-1) for triclocarban to 0.03 +/- 0.01 microg L(-1) for fipronil. Median concentrations in effluent were highest for triclocarban and triclosan (0.23 +/- 0.08 and 0.07 +/- 0.04 microg L(-1), respectively). Median aqueous-phase removal efficiencies (+/-95% CI) of activated sludge treatment plants decreased in the order of: triclosan (96 +/- 2%) > triclocarban (87 +/- 7%) > dichlorocarbanilide (55 +/- 20%) > fipronil (18 +/- 22%). Median concentrations of organohalogens were typically higher in anaerobically than in aerobically digested sludges, and peaked at 27 600 +/- 9600 and 15 800 +/- 8200 microg kg(-1) for triclocarban and triclosan, respectively. Mass balances obtained for three primary pesticides in six activated sludge treatment plants employing anaerobic digestion suggested a decreasing overall persistence from fipronil (97 +/- 70%) to triclocarban (87 +/- 29%) to triclosan (28 +/- 30%). Nationwide release of the investigated organohalogens to agricultural land via municipal sludge recycling and into surface waters is estimated to total 258 000 +/- 110 00 kg year(-1) (mean +/- 95% confidence interval), with most of this mass derived from antimicrobial consumer products of daily use. This study addresses some of the data gaps identified by the National Research Council in its 2002 study on standards and practices of biosolids application on land.


Asunto(s)
Desinfectantes/análisis , Monitoreo del Ambiente/métodos , Plaguicidas/análisis , Aguas del Alcantarillado/química , Contaminantes del Suelo/análisis , Contaminantes del Agua/análisis , Desinfectantes/química , Hidrocarburos Halogenados/análisis , Cinética , Plaguicidas/química , Estados Unidos , Eliminación de Residuos Líquidos
2.
Environ Health Perspect ; 115(12): 1794-800, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18087602

RESUMEN

BACKGROUND: Recent studies have reported blood levels of polybrominated diphenyl ethers (PBDEs) in the U.S. population. Information about neonatal levels and about the relationship to polychlorinated biphenyls (PCBs) exposures is limited. OBJECTIVES: The objective was to characterize levels and determinants of fetal exposure to PBDEs and PCBs among newborns from Baltimore, Maryland. METHODS: We analyzed umbilical cord blood for eight PBDEs and 35 PCBs from infants delivered at the Johns Hopkins Hospital. Maternal and infant characteristics were abstracted from medical records. RESULTS: Ninety-four percent of cord serum samples had quantifiable levels of at least one PBDE congener, and > 99% had at least one detectable PCB congener. PBDE concentrations in cord blood were similar to those reported in other studies from North America. Strong correlations were observed within but not across PCB and PBDE classes. Multivariate models showed that many factors independently predicted exposure to BDE-47, BDE-100, and BDE-153 and CB-118, CB-138/158, CB-153, and CB-180. Generally, infants of Asian mothers had lower PBDE and PCB levels, and infants of smokers had higher levels. Increased maternal body mass index was associated with lower levels of PCBs but not PBDEs. Levels of PCBs but not PBDEs were lower in births from married and multiparous mothers. Increased maternal age was associated with higher PCB levels but lower PBDE levels. CONCLUSIONS: Although many of the factors we investigated were independent predictors of both PBDE and PCB levels, in some cases the direction of associations was different. More research is needed to better understand the sources and pathways of PBDE exposure.


Asunto(s)
Éteres Fenílicos/sangre , Bifenilos Polibrominados/sangre , Efectos Tardíos de la Exposición Prenatal , Población Urbana , Adulto , Femenino , Sangre Fetal/química , Humanos , Recién Nacido , Lípidos , Embarazo , Análisis de Regresión
3.
Chemosphere ; 66(2): 362-9, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16766013

RESUMEN

The antimicrobial agent triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol; TCS) is a member of a larger group of polychlorinated binuclear aromatic compounds frequently associated with adverse environmental and human health effects. Whereas the structure and function of TCS would suggest significant resistance to biotransformation, biological wastewater treatment currently is considered the principal destructive mechanism limiting dispersal of and environmental contamination with this compound. We explored the persistence of TCS in a typical full-scale activated sludge US sewage treatment plant using a mass balance approach in conjunction with isotope dilution liquid chromatography electrospray ionization mass spectrometry (ID-LC-ESI-MS) for accurate quantification. Average influent and effluent concentrations (mean +/- SD) of 4.7+/-1.6 and 0.07+/-0.06 microg 1(-1), respectively, revealed an apparent (liquid-phase) removal efficiency of 98+/-1%. However, further analyses demonstrated that the particle-active TCS (80+/-22% particle-associated in influent) was sequestered into wastewater residuals and accumulated in dewatered, digested sludge to concentrations of 30000+/-11000 microg kg-1. Overall, 50+/-19% (1640+/-610 g d-1) of the disinfectant mass entering the plant (3240+/-1860 g d-1) remained detectable in sludge, and less than half of the total mass (48+/-19%) was biotransformed or lost to other mechanisms. Thus, conventional sewage treatment was demonstrated to be much less effective in destroying the antimicrobial than the aqueous-phase removal efficiency of the plant would make believe. Furthermore, study findings indicate that the common practice of sludge recycling in agriculture results in the transfer of substantial quantities of TCS to US soils used, in part, for animal husbandry and crop production.


Asunto(s)
Aguas del Alcantarillado/análisis , Triclosán/análisis , Eliminación de Residuos Líquidos/métodos , Cromatografía Liquida , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Reproducibilidad de los Resultados , Aguas del Alcantarillado/química , Espectrometría de Masa por Ionización de Electrospray , Triclosán/aislamiento & purificación , Estados Unidos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación
4.
Environ Sci Technol ; 42(17): 6324-32, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18800497

RESUMEN

Mass balances are an instructive means for investigating the fate of chemicals during wastewater treatment. In addition to the aqueous-phase removal efficiency (phi), they can inform on chemical partitioning, transformation, and persistence, as well as on the chemical loading to streams and soils receiving, respectively, treated effluent and digested sewage sludge (biosolids). Release rates computed on a per-capita basis can serve to extrapolate findings to a larger scale. This review examines over a dozen mass balances conducted for various organic wastewater contaminants, including prescription drugs, estrogens, fragrances, antimicrobials, and surfactants of differing sorption potential (hydrophobicity), here expressed as the 1-octanol-water partition coefficient (K(OW)) and the organic carbon normalized sorption coefficient (K(OC)). Major challengesto mass balances are the collection of representative samples and accurate quantification of chemicals in sludge. A meta-analysis of peer-reviewed data identified sorption potential as the principal determinant governing chemical persistence in biosolids. Occurrence data for organic wastewater compounds detected in digested sludge followed a simple nonlinear model that required only K(OW) or K(OC) as the input and yielded a correlation coefficient of 0.9 in both instances. The model predicted persistence in biosolids for the majority (> 50%) of the input load of organic wastewater compounds featuring a log10 K(OW) value of greater than 5.2 (log10 K(OC) > 4.4). In contrast, hydrophobicity had no or only limited value for estimating, respectively, phi and the overall persistence of a chemical during conventional wastewater treatment.


Asunto(s)
Contaminantes del Agua/química , Monitoreo del Ambiente , Aguas del Alcantarillado
5.
Environ Sci Technol ; 42(9): 3335-40, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18522115

RESUMEN

Three organic wastewater compounds (OWCs) were evaluated in theory and practice for their potential to trace sewage-derived microbial contaminants in surface waters. The underlying hypothesis was that hydrophobic OWCs outperform caffeine as a chemical tracer, due to their sorptive association with suspended microorganisms representing particulate organic carbon (POC). Modeling from first principles (ab initio) of OWC sorption to POC under environmental conditions suggested an increasing predictive power: caffeine (0.2% sorbed) < triclosan (9-60%; pH 6-9) < triclocarban (76%). Empirical evidence was obtained via analysis of surface water from three watersheds in a rural-to-urban gradient in Baltimore, MD. Mass spectrometric OWC detections were correlated to microbial plate counts for 40 monitoring sites along 14 streams, including multiple chronic sewage release sites and the local wastewater treatment plant. Consistent with ab initio calculations, correlation analyses of 104 observations for fecal coliforms, enterococci, and Escherichia coli in natural surface waters showed that the particle-active antimicrobials triclosan and triclocarban (R2 range, 0.45-0.55) were indeed superior to caffeine (0.16-0.37) for tracking of microbial indicators. It is concluded that chemical monitoring of microbial risks is more effective when using hydrophobic OWCs such as triclosan and triclocarban in place of, or in conjunction with, the traditional marker caffeine.


Asunto(s)
Cafeína/análisis , Carbanilidas/análisis , Triclosán/análisis , Contaminantes Químicos del Agua/análisis , Baltimore , Carbono/química , Monitoreo del Ambiente/métodos , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Maryland , Espectrometría de Masas/métodos , Microbiología , Compuestos Orgánicos , Aguas del Alcantarillado , Agua/análisis
6.
Environ Sci Technol ; 42(12): 4570-6, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18605588

RESUMEN

The biocides triclosan and triclocarban are wastewater contaminants whose occurrence and fate in estuarine sediments remain unexplored. We examined contaminant profiles in 137Cs/7Be-dated sediment cores taken near wastewater treatment plants in the Chesapeake Bay watershed (CB), Maryland and Jamaica Bay(JB), New York. In JB, biocide occurrences tracked the time course of biocide usage and wastewater treatment strategies employed, first appearing in the 1950s (triclocarban) and 1960s (triclosan), and peaking in the late 1960s and 1970s (24 +/- 0.54 and 0.8 +/- 0.4 mg/kg dry weight, respectively). In CB, where the time of sediment accumulation was not as well constrained by 137Cs depth profiles, triclocarban was only measurable in 137Cs-bearing sediments, peaking at 3.6 +/- 0.6 mg/ kg midway through the core and exceeding 1 mg/kg in recent deposits. In contrast, triclosan concentrations were low or not detectable in the CB core. Analysis of CB sediment by tandem mass spectrometry produced the first evidence for complete sequential dechlorination of triclocarban to the transformation products dichloro-, monochloro-, and unsubstituted carbanilide, which were detected at maxima of 15.5 +/- 1.8, 4.1 +/- 2.4, and 0.5 +/- 0.1 mg/kg, respectively. Concentrations of all carbanilide congeners combined were correlated with heavy metals (R2 > 0.64, P < 0.01), thereby identifying wastewater as the principal pathway of contamination. Environmental persistence over the past 40 years was observed for triclosan and triclocarban in JB, and for triclocarban's diphenylurea backbone in CB sediments.


Asunto(s)
Carbanilidas/química , Cloro/química , Sedimentos Geológicos/química , Triclosán/química , Radioisótopos de Cesio/química , Oxidación-Reducción
7.
Environ Res ; 103(1): 21-9, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16678153

RESUMEN

The antimicrobial compound triclocarban (TCC; 3,4,4'-trichlorocarbanilide; CAS# 101-20-2) is a high-production-volume chemical, recently suggested to cause widespread contamination of US water resources. To test this hypothesis, we developed an isotope dilution liquid chromatography electrospray ionization tandem mass spectrometry method for ultratrace analysis of TCC (0.9 ng/L detection limit) and analyzed low-volume water samples (200 mL) along with primary sludge samples from across the United States. All river water samples (100%) collected downstream of wastewater treatment plants had detectable levels of TCC, as compared to 56% of those taken upstream. Concentrations of TCC (mean+/-standard deviation) downstream of sewage treatment plants (84+/-110 ng/L) were significantly higher (P<0.05; Wilcoxon rank sum test) than those of samples taken upstream (12+/-15 ng/L). Compared to surface water, mean TCC concentrations found in dried, primary sludge obtained from municipal sewage treatment plants in five states were six orders of magnitude greater (19,300+/-7100 microg/kg). Several river samples contained a co-contaminant, identified based on its chromatographic retention time, molecular base ion, and MS/MS fragmentation behavior as 4,4'-dichlorocarbanilide (DCC; CAS# 1219-99-4). In addition to TCC and DCC, municipal sludge contained a second co-contaminant, 3,3',4,4'-tetrachlorocarbanilide (TetraCC; CAS# 4300-43-0). Both newly detected compounds were present as impurities (0.2%(w/w) each) in technical grade TCC (99%). Application of the new method for chlorocarbanilide analysis yielded TCC occurrence data for 13 US states, confirmed the role of sewage treatment plants as environmental inputs of TCC, and identified DCC and TetraCC as previously unrecognized pollutants released into the environment alongside TCC.


Asunto(s)
Antiinfecciosos Locales/análisis , Carbanilidas/análisis , Ríos/química , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/análisis , Cromatografía Líquida de Alta Presión , Monitoreo del Ambiente , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Estados Unidos
8.
Environ Sci Technol ; 41(11): 3891-7, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17612165

RESUMEN

Polyfluoroalkyl compounds (PFCs), such as perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), are ubiquitous, man-made chemicals. Human data suggest that in utero exposures to these chemicals occur and some evidence of developmental toxicity in animals exists. To assess the distribution and determinants of fetal exposure to PFCs, we analyzed cord serum samples from 299 singleton newborns delivered between 2004 and 2005 in Baltimore, MD for 10 PFCs by employing on-line solid-phase extraction coupled with reversed-phase high-performance liquid chromatography-tandem mass spectrometry. PFOS and PFOA were detected in 99 and 100% of umbilical cord sera, with geometric mean concentrations of 4.9 and 1.6 ng/mL, respectively. PFOS and PFOA concentrations were highly correlated (Pearson's r = 0.64 after natural log transformation, p < 0.01). Eight other PFCs were detected less frequently and at lower concentrations than PFOS and PFOA. Geometric mean concentrations of PFOS for Asians (6.0 ng/mL) and Blacks (5.1 ng/mL) were higher than those for Whites (4.2 ng/mL), while PFOA levels were more evenly distributed by race. Other maternal demographic and socioeconomic characteristics, including age, education, marital status, and living in the city limits were not significantly associated with cord concentrations. Our findings suggest that in utero exposure to PFOS and PFOA is ubiquitous in a population of babies born in Baltimore, MD.


Asunto(s)
Ácidos Alcanesulfónicos/sangre , Caprilatos/sangre , Contaminantes Ambientales/sangre , Sangre Fetal/química , Fluorocarburos/sangre , Exposición Materna , Adolescente , Adulto , Baltimore , Estudios Transversales , Femenino , Humanos , Intercambio Materno-Fetal , Embarazo
9.
Environ Sci Technol ; 40(11): 3634-9, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16786704

RESUMEN

The topical antiseptic agent triclocarban (TCC) is a common additive in many antimicrobial household consumables, including soaps and other personal care products. Long-term usage of the mass-produced compound and a lack of understanding of its fate during sewage treatment motivated the present mass balance analysis conducted at a typical U.S. activated sludge wastewater treatment plant featuring a design capacity of 680 million liters per day. Using automated samplers and grab sampling, the mass of TCC contained in influent, effluent, and digested sludge was monitored by isotope dilution liquid chromatography (tandem) mass spectrometry. The average mass of TCC (mean +/- standard deviation) entering and exiting the plant in influent (6.1 +/- 2.0 microg/L) and effluent (0.17 +/- 0.03 microg/ L) was 3737 +/- 694 and 127 +/- 6 g/d, respectively, indicating an aqueous-phase removal efficiency of 97 +/- 1%. Tertiary treatment by chlorination and sand filtration provided no detectable benefit to the overall removal. Due to strong sorption of TCC to wastewater particulate matter (78 +/- 11% sorbed), the majority of the TCC mass was sequestered into sludge in the primary and secondary clarifiers of the plant. Anaerobic digestion for 19 days did not promote TCC transformation, resulting in an accumulation of the antiseptic compound in dewatered, digested municipal sludge to levels of 51 +/- 15 mg/kg dry weight (2815 +/- 917 g/d). In addition to the biocide mass passing through the plant contained in the effluent (3 +/- 1%), 76 +/- 30% of the TCC input entering the plant underwent no net transformation and instead partitioned into and accumulated in municipal sludge. Based on the rate of beneficial reuse of sludge produced by this facility (95%), which exceeds the national average (63%), study results suggest that approximately three-quarters of the mass of TCC disposed of by consumers in the sewershed of the plant ultimately is released into the environment by application of municipal sludge (biosolids) on land used in part for agriculture.


Asunto(s)
Carbanilidas/análisis , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Carbanilidas/química , Monitoreo del Ambiente/métodos , Aguas del Alcantarillado/análisis , Eliminación de Residuos Líquidos/instrumentación , Contaminantes Químicos del Agua/análisis , Purificación del Agua/instrumentación , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA